High-Accuracy Stroke Detection System Using a CBAM-ResNet18 Deep Learning Model on Brain CT Images
Abstract
Stroke is a brain dysfunction that occurs suddenly as a result of local or overarching damage to the brain, lasts for at least 24 hours, and causes about 15 million deaths each year globally. Immediate medical treatment is essential to reduce the potential for further brain damage in stroke patients. Medical imaging, especially computed tomography (CT scan), plays a crucial role in the diagnosis of stroke. This study aims to develop and evaluate a deep learning architecture based on Convolutional Block Attention Module (CBAM) and ResNet18 for stroke classification in CT images. This model is designed through data preprocessing, training, and evaluation stages using a cross-validation approach. The results showed that the CBAM-ResNet18 integration resulted in a high accuracy of 95% in distinguishing stroke and non-stroke cases. The accuracy rate reached 96% for nonstroke identification (class 0) and 94% for stroke (class 1), with recall rates of 96% and 93%, respectively. Outstanding classification ability is demonstrated by an Area Under the Curve (AUC) value of 0.99. In comparison, the standard ResNet18 model shows significant fluctuations in validation loss and difficulty in generalization, with training accuracy only reaching 64-68%. On the other hand, CBAM-ResNet18 showed a significant performance improvement with a validation accuracy of 95%, a validation loss of 0.0888, and good generalization on new data. However, the limitations of the dataset and the interpretation of the results indicate the need for further validation to ensure the generalization of the model. These results show the great potential of the CBAM-ResNet18 architecture as an innovative tool in stroke diagnostic technology based on CT imaging analysis. This technology can support faster and more accurate clinical decision-making, as well as open up opportunities for further research related to the development of artificial intelligence-based systems in the medical field.
Article Metrics
Abstract: 177 Viewers PDF: 106 ViewersKeywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0