An IoT-Enabled Smart System Utilizing Linear Regression for Sheep Growth and Health Monitoring

Syahril Efendi, Poltak Sihombing, Herman Mawengkang, Arjon Turnip, Gerhard Wilhelm Weber

Abstract


The global livestock industry faces significant pressures from climate change, land constraints, and rising consumer demand, necessitating greater efficiency and sustainability in production. To address these challenges, there is a critical need for accessible, data-driven tools; however, accessible and individualized tools for monitoring the growth and health of livestock like sheep remain underdeveloped, limiting farmers' ability to transition from reactive to proactive management. This study developed and validated an Internet of Things (IoT) smart system for monitoring sheep using an Arduino and ESP32 platform equipped with a DHT22 sensor for temperature and humidity and a load cell for weight. Weekly weight data from 15 sheep were collected over a six-month period. Simple linear regression was then applied to model the individual growth trajectory of each animal. The IoT system was successfully implemented and deployed in a farm setting. The primary finding was that individualized linear regression models provided a highly accurate method for tracking sheep growth, with R² values consistently exceeding 99% for most animals. The system effectively delivered real-time reports on growth trajectories and health-relevant environmental conditions (e.g., temperature and humidity) to a smartphone interface, confirming its practical utility. The primary implication of this research is a validated framework for practical and interpretable precision livestock farming. The system empowers farmers to shift from reactive to proactive management by using individualized growth curves as baselines for early problem detection. This dual-function system enhances productivity through precise growth tracking while supporting animal welfare via environmental monitoring, offering a valuable tool for modern, sustainable sheep farming.


Article Metrics

Abstract: 5 Viewers PDF: 10 Viewers

Keywords


Growth Modeling; Iot; Linear Regression; Precision Livestock Farming; Smart Farming

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0