Enhancing the Performance of Machine Learning Algorithm for Intent Sentiment Analysis on Village Fund Topic

M. Khairul Anam, Pandu Pratama Putra, Rio Andika Malik, Karfindo Karfindo, Teri Ade Putra, Yesri Elva, Raja Ayu Mahessya, Muhammad Bambang Firdaus, Ikhsan Ikhsan, Chichi Rizka Gunawan

Abstract


This study explores the implementation of Intent Sentiment Analysis on Twitter data related to the Village Fund program, leveraging Multinomial Naïve Bayes (MNB) and enhancing it with Synthetic Minority Over-sampling Technique (SMOTE) and XGBoost (XGB). The analysis categorizes tweets into six labels: Optimistic, Pessimistic, Advice, Satire, Appreciation, and No Intent. Initially, the MNB model achieved an accuracy of 67% on a 90:10 data split. By applying SMOTE, accuracy improved by 12%, reaching 89%. However, adding Chi-Square feature selection did not increase accuracy further. Incorporating XGB into the MNB+SMOTE model led to a 6% improvement, achieving a final accuracy of 95%. Comprehensive model evaluation revealed that the MNB+SMOTE+XGB model achieved 96% accuracy, 96% precision, 96% recall, and a 96% F1-score, with an AUC of 99%, categorizing it as excellent. These findings demonstrate that the combination of SMOTE for addressing class imbalance and XGBoost for boosting performance significantly enhances the MNB model's classification capabilities. The novelty lies in the integration of these techniques to improve intent sentiment classification for public opinion analysis on the Village Fund program. The results indicate that the majority of tweets labeled as "No Intent" reflect a lack of specific sentiment or actionable intent, providing valuable insights into public perception of the program.


Article Metrics

Abstract: 33 Viewers PDF: 37 Viewers

Keywords


Multinomial Naïve Bayes; Intent Sentiment Analysis; SMOTE; XGBoost

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0