Improved Performance of Hybrid GRU-BiLSTM for Detection Emotion on Twitter Dataset
Abstract
This study addresses emotion detection challenges in tweets, focusing on contextual understanding and class imbalance. A novel hybrid deep learning architecture combining GRU-BiLSTM with SMOTE is proposed to enhance classification performance on an Israel-Palestine conflict dataset. The dataset contains 40,000 tweets labeled with six emotions: anger, disgust, fear, joy, sadness, and surprise. SMOTE effectively balances the dataset, improving model fairness in detecting minority classes. Experimental results show that the GRU-BiLSTM hybrid with an 80:20 data split achieves the highest accuracy of 89%, surpassing BiLSTM alone, which obtained 88%, and other state-of-the-art models. Notably, the proposed model delivers significant improvement in detecting the emotion of joy (recall: 0.87, F1-score: 0.86). In contrast, the surprise category remains challenging (recall: 0.24). Compared to existing research, this study highlights the effectiveness of combining SMOTE and hybrid GRU-BiLSTM, outperforming models such as CNN, GRU, and LSTM on similar datasets. The incorporation of GloVe embeddings enhances contextual word representations, enabling nuanced emotion detection even in sarcastic or ambiguous texts. The novelty lies in addressing class imbalance systematically with SMOTE and leveraging GRU-BiLSTM's complementary strengths, yielding superior performance metrics. This approach contributes to advancing emotion detection tasks, especially in conflict-related social media data, by offering a robust, context-sensitive, and balanced classification method.
Article Metrics
Abstract: 238 Viewers PDF: 148 ViewersKeywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
Journal of Applied Data Sciences
ISSN | : | 2723-6471 (Online) |
Organized by | : | Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia. |
Website | : | http://bright-journal.org/JADS |
: | taqwa@amikompurwokerto.ac.id (principal contact) | |
support@bright-journal.org (technical issues) |
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0