Integrating Convolutional Neural Networks into Mobile Health: A Study on Lung Disease Detection

Muhammad Said Hasibuan, R Rizal Isnanto, Deshinta Arrova Dewi, Joko Triloka, RZ Abdul Aziz, Tri Basuki Kurniawan, Ary Maizary, Anggawidia Wibaselppa

Abstract


This study presents the development and evaluation of a Convolutional Neural Network (CNN) model for lung disease detection from chest X-ray images, complemented by a mobile application for real-time diagnosis. The CNN model was trained on a diverse dataset comprising images labeled as "NORMAL" and "PNEUMONIA," achieving an overall accuracy of 96%. Compared to traditional machine learning methods such as Support Vector Machine (SVM) and Random Forest, which typically achieve accuracies ranging from 85% to 92%, the proposed CNN model demonstrates superior performance in classifying lung conditions. The model achieved high precision (0.98) and recall (0.96) for pneumonia detection, as well as precision (0.89) and recall (0.95) for normal cases, ensuring both sensitivity and specificity in diagnostic performance. These results indicate that the model minimizes false positives and false negatives, which is crucial for reducing misdiagnoses and improving patient outcomes in clinical settings. To enhance accessibility, an Android-based application was developed, allowing users to upload chest X-ray images and receive instant diagnostic results. The application successfully integrated the trained CNN model, offering a user-friendly interface suitable for healthcare professionals and patients alike. User testing demonstrated reliable performance, facilitating timely and accurate lung disease detection, particularly in areas with limited access to radiologists. These findings highlight the potential of CNNs in medical imaging and the critical role of mobile technology in expanding healthcare accessibility. This innovative approach not only improves diagnostic accuracy but also enables real-time disease detection, ultimately supporting clinical decision-making. Future research will focus on expanding the dataset, incorporating additional lung conditions, and optimizing the model for enhanced robustness in diverse clinical scenarios.


Article Metrics

Abstract: 4 Viewers PDF: 3 Viewers

Keywords


Convolutional Neural Network (CNN); Detection; Pneumonia

Full Text:

PDF


Refbacks

  • There are currently no refbacks.



Barcode

Journal of Applied Data Sciences

ISSN : 2723-6471 (Online)
Organized by : Computer Science and Systems Information Technology, King Abdulaziz University, Kingdom of Saudi Arabia.
Website : http://bright-journal.org/JADS
Email : taqwa@amikompurwokerto.ac.id (principal contact)
    support@bright-journal.org (technical issues)

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0