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Abstract 

Heart stroke remains one of the leading causes of death worldwide, necessitating early and accurate prediction systems to enable timely medical 

intervention. While a variety of machine learning approaches have been employed to address this issue, including Logistic Regression, Decision 

Trees, Random Forests, Support Vector Machines, and K-Nearest Neighbors, these models often suffer from limitations such as overfitting, 

insufficient generalization, poor performance on imbalanced datasets, and inability to capture complex nonlinear patterns in clinical data. 

Additionally, many existing works do not comprehensively integrate both clinical and demographic features or lack rigorous evaluation metrics 

beyond accuracy alone. This study proposes a novel Feed-Forward Neural Network (FFNN) model for heart stroke prediction, designed to 

overcome the shortcomings of conventional models. Unlike shallow classifiers, the FFNN architecture employed here leverages multiple hidden 

layers and nonlinear activation functions to learn intricate relationships within the dataset. The dataset used comprises various attributes such as 

age, hypertension, heart disease, BMI, and smoking status, which were preprocessed through normalization, one-hot encoding, and imputation 

techniques to ensure data quality and model performance. Experiments were conducted using a stratified train-test split, and the model was trained 

using the Adam optimizer with carefully tuned hyperparameters. Comparative evaluations against baseline models (Logistic Regression, Random 

Forest, and SVM) were carried out using precision, recall, F1-score, and ROC-AUC as performance metrics. The proposed FFNN achieved the 

highest accuracy of 96.47%, along with substantial improvements in recall and F1-score, highlighting its superior capability in identifying 

potential stroke cases even in imbalanced datasets. This work bridges a significant gap in heart stroke prediction by demonstrating the 

effectiveness of deep learning models—specifically FFNNs—in extracting complex patterns from diverse patient data. It also sets the stage for 

further exploration of deep learning-based clinical decision support systems. 

Keywords: Heart Stroke Prediction, Neural Network, Machine Learning,  Predictive Modelling, Accuracy, Public Health, Cardiovascular Disease, 

1. Introduction 

A stroke, also known as a Cerebrovascular Accident (CVA), is a medical emergency in which the supply of oxygen 

and nutrients to parts of the brain is interrupted, leading to rapid brain cell death. Stroke is a critical condition requiring 

immediate medical attention [1]. Globally, stroke affects approximately 13 million people annually and results in over 

5 million deaths. It is the second most common cause of adult disability worldwide and ranks fifth in the United States 

as a cause of mortality, while being the leading cause of long-term adult disability [2]. 
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Stroke prediction refers to the identification of individuals at high risk of experiencing a stroke, based on factors such 

as age, sex, race, medical and family history, and lifestyle [3]. This field of research is essential because early 

identification of high-risk individuals can significantly reduce the burden of stroke. Effective prediction enables timely 

preventive measures and treatment, which greatly improves patient outcomes [4], [5]. 

However, stroke prediction faces several challenges. One of the key difficulties is the wide variety of potential causes 

of stroke, some of which are still not well understood. Moreover, risk levels vary significantly between individuals, 

and accurate models must distinguish between high-risk and low-risk populations to avoid unnecessary treatment and 

associated costs. Despite these issues, advancements in stroke prediction algorithms have led to more accurate 

identification methods in recent years [6]. 

The urgency of improving stroke prediction is evident when considering the broader impacts. After cancer and heart 

disease, stroke is the third leading cause of death worldwide. In the United States alone, stroke-related healthcare costs 

exceed $50 billion annually [7], [8]. Early detection and treatment can significantly reduce mortality and disability, 

alleviating both human suffering and economic burden [9]. Yet, model reliability remains a pressing concern. Some 

individuals suffer strokes despite having no known risk factors, while others with multiple risk factors may never 

experience one. Thus, predictive models must be both accurate and personalized. They must also effectively balance 

sensitivity and specificity to ensure clinical relevance and practicality [10]. 

To achieve this, large and diverse datasets must be leveraged, and prediction tools must be accessible to clinicians. 

Artificial intelligence (AI) has emerged as a promising solution, with machine learning algorithms capable of 

identifying complex patterns in medical data to enhance prediction accuracy [11]. Machine learning and data science 

provide tools for building robust stroke prediction models. These approaches allow researchers to process large 

volumes of patient data to identify risk-related features and train accurate classifiers. Such models often outperform 

traditional statistical techniques [12], [13], [14]. 

Given the complexity of stroke prediction, the limitations of classical machine learning models, and the presence of 

issues like class imbalance, we propose the use of a deep learning model. A feed-forward neural network built from 

scratch is particularly promising due to its ability to autonomously learn and capture intricate patterns in data. This 

model holds the potential to provide more reliable and accurate stroke prediction results [15], [16], [17]. 

2. Literature Review 

Research on stroke prediction has evolved significantly in recent years, with various approaches aiming to identify 

individuals at risk based on clinical, demographic, and behavioral data. Several studies have explored machine learning 

and data mining techniques to enhance prediction accuracy and clinical relevance [18], [19], [20], [21]. In [22], 

researchers utilized the Cardiovascular Health Study (CHS) dataset to evaluate the performance of multiple machine 

learning algorithms. They proposed an integrated approach combining Decision Tree (DT), Principal Component 

Analysis (PCA), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). This ensemble method 

yielded the best results among the tested configurations. However, a major limitation of this study was the constrained 

number of input parameters available in the CHS dataset, which may reduce the model's applicability in real-world 

scenarios with more complex patient profiles. 

A novel direction was taken in [23], where the Disease Related Feature Selection (DRFS) technique was applied to 

social media data for stroke symptom detection. Natural Language Processing (NLP) methods were employed to extract 

relevant features from user-generated content. Although this method expanded the range of data sources for prediction, 

it introduced significant computational complexity due to the processing demands of unstructured text data, resulting 

in increased runtime and resource usage. 

The work presented in [24] introduced a modified Random Forest (RF) algorithm designed specifically for stroke 

prediction. The enhanced RF model outperformed traditional algorithms in accuracy and robustness. Nevertheless, the 

study was limited in scope as it focused solely on ischemic stroke and did not explore model adaptability to other stroke 

subtypes or unseen data distributions. 
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Another comparative study evaluated DT, RF, and Multi-layer Perceptron (MLP) models for stroke prediction using 

standard datasets [25]. Accuracy levels ranged from 74% to 75%, with MLP demonstrating marginally superior 

performance. However, the study relied exclusively on accuracy as the evaluation metric, neglecting other important 

indicators such as precision, recall, F1-score, and AUC, which are essential for a balanced assessment in imbalanced 

medical datasets. 

In [26], the performance of DT, Naive Bayes (NB), and SVM was analyzed, with the highest accuracy reaching only 

60%. This relatively low performance underscores the need for more sophisticated models or richer datasets. By 

contrast, [27] reported a striking 95% accuracy using a combination of three classification algorithms—C4.5, JRip, and 

MLP. While impressive, the high accuracy came at the cost of increased model complexity and extended training and 

prediction time, which may hinder deployment in time-sensitive clinical settings. 

Study [28] also focused on comparing the performance of NB, DT, and ANN in stroke prediction. DT again proved to 

be the most accurate among the three with a 75% accuracy rate. Although ANN offered potential advantages in 

capturing nonlinear relationships, it required more training time and tuning, highlighting a trade-off between 

performance and efficiency. 

Feature selection remains a pivotal aspect of stroke prediction, and [29] proposed a new method to automatically select 

robust features from the CHS dataset. While the approach led to improved model generalization, its combination with 

SVM resulted in the generation of a large number of support vectors. This not only slowed down model inference but 

also reduced interpretability—an important factor in clinical decision-making. 

The use of ANN with backpropagation algorithms has also shown promise in stroke prediction. Studies [30], [31], and 

[32] applied this approach to predict thromboembolic stroke with high accuracy. However, they encountered significant 

training challenges as the number of neurons and hidden layers increased. These models became computationally 

expensive and less practical without high-performance computing resources. Additionally, later follow-up studies [33], 

[34], [35] confirmed that while ANN models are powerful, their complexity must be managed to ensure scalability and 

clinical usability. 

Across these studies, it is evident that no single model offers a perfect solution. Classical models like DT and RF are 

easier to interpret and deploy but may lack the predictive power of deep learning models. On the other hand, deep 

learning models like ANN and MLP provide higher accuracy but require extensive tuning and resources. These findings 

emphasize the importance of model selection based on context—balancing predictive performance with efficiency, 

interpretability, and scalability. 

3. Material and Method 

3.1. Proposed Methodology 

The proposed methodology is presented in figure 1. The dataset is pre-processed to remove outliers and replace missing 

values. The pre-processed data is analyzed using exploratory data analysis to gain insights into the correlations between 

the various parameters. Feature importance is then used to select the most salient parameters that influence stroke risk 

prediction. Parameters with little or no influence on the target output are removed to reduce computational cost and the 

chance of model overfitting. A ratio of 80:20 is used for training and testing the model, with 80% being used to train 

and 20% to test. An accurate, precise, recall, and F1 score are used to determine whether the model is acceptable. 
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Figure 1. Proposed methodology 

3.2. Dataset Description and Preprocessing  

All Data for stroke prediction was collected from Kaggle [36]. The key information about the dataset is summarized in 

table 1. It is pertinent to mention that there are 201 missing entries in the BMI column, and roughly 30% of patients 

lack information regarding their smoking status, presenting a training challenge. In essence, the dataset is relatively 

small and exhibits a significant imbalance between stroke and non-stroke cases, posing difficulties for ML models in 

achieving accurate stroke predictions. Moreover, the presence of missing values further affected model accuracy. 

Notwithstanding these obstacles, the dataset remains viable for training ML models to forecast stroke. It's crucial, 

however, to acknowledge these dataset limitations and take corrective measures, including oversampling to address 

data imbalances and imputation techniques to handle missing values. 

Table 1. Heart Stroke Dataset 

Dataset Details Stroke Prediction Dataset 

Source Kaggle [36] 

Size 5110 rows, 12 columns 

Columns 
The ID, the gender, the age, the BMI, the hypertension, the heart disease, the marriage status, the level 

of glucose in the blood, the type of residence, the smoking status, and the stroke status are all included. 

Target Variable stroke' (binary): '0' (no stroke risk), '1' (potential stroke risk) 

Class Imbalance Significant class imbalance, '0' (4861 instances), '1' (only 249 instances) 

Data Pre-processing Applied to address class imbalance for improved predictive accuracy 

The process is started with dataset pre-processing step to ensure data quality, enhancing the ML model performance. 

In this study, the data pre-processing, includes identifying outliers, handling null values, and reducing noise. Of the 

5,110 total records, 201 had missing values for the BMI variable. To fix this, a Simple Imputer tool in Scikit-learn is 

used to substitute the median of the column for the missing data. Scikit-learn's Simple Imputer is a univariate imputation 

method that uses a suitable statistic (such as the mean, median, or most frequent) to replace missing values in each 

column. Additionally, the 'id' column is removed as it has minimal impact on the stroke risk. Furthermore, a single 

instance where the gender attribute was specified as 'Other,' was considered as an outlier and subsequently is removed.  

3.3. Data Visualization 

 Data visualization is a crucial component of Exploratory Data Analysis (EDA), particularly in the context of stroke 

prediction. It involves the graphical representation of data through various visual tools such as bar charts, histograms, 

scatter plots, heatmaps, and box plots. The primary objective is to enable researchers and practitioners to observe 

patterns, trends, correlations, and outliers that may not be readily apparent from raw numerical data. In the domain of 

medical diagnosis, and specifically in stroke prediction, data visualization helps to assess the distribution of key 

variables such as age, gender, hypertension, heart disease, smoking status, and Body Mass Index (BMI). For example, 
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a histogram can reveal whether age distribution is skewed, while box plots can highlight potential anomalies in blood 

glucose levels or BMI that may be associated with stroke risk. Such insights are essential for guiding data preprocessing 

decisions and informing feature selection for model development. 

Moreover, correlation heatmaps are frequently employed to identify relationships between variables. For instance, a 

strong positive correlation between age and stroke incidence can inform the prioritization of age as a significant 

predictor in modeling efforts. Similarly, visualizing missing data patterns using heatmaps or matrix plots enables better 

handling of data imputation or exclusion strategies. Another key aspect of data visualization in this context is the 

comparison of stroke versus non-stroke populations across multiple features. Grouped bar charts and violin plots are 

often used to contrast feature distributions between these classes, which aids in understanding class imbalances and 

variable importance. This comparative analysis is critical for designing robust machine learning algorithms that can 

generalize well across different subsets of patient data. 

3.3.1. Univariate-Analysis 

Univariate-analysis is a statistical approach that centers on the examination of one variable or attribute at a time. Its 

primary objective is to comprehend the distribution, attributes, and characteristics of that specific variable 

independently. Univariate analysis serves as a tool for researchers and analysts to uncover patterns and behaviours 

within individual variables, excluding considerations of their interactions with other variables. In the context of strokes 

prediction, univariate analysis entails the scrutiny of individual variables to understand their distribution and 

characteristics, with a particular focus on their relevance to the target variable “stroke” as shown in figure 2. 

 

Figure 2. Single-variable examination for heart stroke prediction 

A BMI of 30 or above indicates obesity, and stroke risk is significantly elevated in obese individuals. The highest 

concentration of risk is evident within the BMI range of 25 to 30. Examining the graph in figure 3, it becomes apparent 

that stroke risk is notably elevated among individuals aged 60 to 80. Concerning glucose levels, the risk of stroke 

appears to be heightened across all levels. 

 

Figure 3. Age feature analysis in heart stroke prediction 

Consequently, assessing stroke risk based solely on glucose levels may not be suitable. It is important to note that 

stroke risks are increased for individuals with glucose levels above 200. Both males and females have an increased risk 

of stroke with age, however the female population tends to have strokes earlier in life. Additionally, as glucose levels 

rise, both males and females face an elevated risk of stroke. 
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Moreover, it can be observed that, there is a correlation between age and the likelihood of stroke. Additionally, there 

exists a notable association between stroke occurrence and both BMI and glucose levels. Consequently, these features 

are used in the modelling. It's worth noting that there is a need to normalize the average glucose level due to its 

substantial right-skewness. The Box-Cox normalization technique is used in this study for normalizing numerical 

features. Data distributions can be transformed to resemble normal distributions using the Box-Cox transformation 

[37]. Employing Box-Cox transformation can enhance the predictive capabilities of an analytical model by reducing 

the influence of random noise in the data. Furthermore, log transformation can be used as an alternative approach. One-

dimensional exploration of heart stroke prognosis is shown in figure 4. 

 

Figure 4. One-dimensional exploration of heart stroke prognosis 

3.3.2. Bivariate Analysis 

To understand the interaction between two variables and how they influence stroke risk, bivariate analysis is often 

performed (see figure 5). 

 

 

Figure 5. Two-dimensional exploration of various attributes for heart stroke prognosis 

Figure 6 illustrated Pearson's correlation matrix for the bivariate analysis of the dataset. It is observed that both 

smoking_status and body bmi are inversely related to work_type, with BMI additionally showing a moderate age 

connection. In addition, late marriage in life is significantly associated with older age. 
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Figure 6. Correlation matrix of heart stroke 

3.3.3. Handling with Imbalanced Classes 

Dealing with imbalanced data is a crucial step in ML, particularly when dealing with classification tasks where one 

class significantly outnumbers the other. Imbalanced data can lead to biased models that perform poorly on the minority 

class. While there exist multiple methods to tackle this challenge, this study utilizes resampling approaches, specifically 

oversampling method. Using oversampling, sample instances in the minority class are duplicated or created 

synthetically to increase their number. The Synthetic Minority Over-Sampling Method (SMOTE) is one such method 

that is frequently used. Contrary to oversampling, undersampling aims to reduce the number of samples from the 

majority class. This method can be used to fairly distribute classes [38]. 

SMOTE generates synthetic instances of the minority class to balance the class distribution. This step is essential to 

prevent data leakage and ensure that the model is not exposed to information from the validation or test datasets during 

the oversampling process. Moreover, it's crucial to scale our data separately for each dataset. This feature scaling 

ensures that all features have similar scales or weights when fed into the model. Depending on the distribution and 

characteristics of the data, min-max scaling or standardization (Z-score scaling) are common scaling methods.  

Ultimately, after applying SMOTE, the target feature is transformed to a balanced 50-50 distribution, ensuring that the 

model has a fair representation of both classes and can make more accurate predictions for minority class instances. 

This balanced distribution contributes to better model performance and generalization and is shown in figure 7. 

 

Figure 7. Analysis using SMOTE for heart stroke Dataset 

Balancing the class distribution is essential because it allows the machine learning model to learn from both classes 

equally, improving its ability to make accurate predictions for both majority and minority class instances. This balanced 

distribution contributes to better model performance, especially in cases where the minority class (Class 1, in this 

instance) is of particular interest and importance.  

3.3.4. Feature importance 

To determine which input variables or features have the greatest impact on the model's ability to predict a stroke 

occurrence, feature importance analysis is essential as shown in figure 8. Understanding feature importance helps 
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medical professionals and researchers pinpoint critical risk factors and improve the interpretability of the predictive 

model. 

 

Figure 8. Various Attributes importance in Heart Stroke Dataset. 

3.3.5. Models used in This Study 

Identifying and treating a heart attack or stroke at the earliest possible stage is essential to prevent severe complications. 

Early prediction of individuals at risk of experiencing a stroke enables timely medical intervention, potentially saving 

lives and reducing long-term disabilities. In this study, stroke prediction is framed as a binary classification problem, 

aiming to determine whether an individual is at risk of having a stroke (Class 1) or not (Class 0) based on a variety of 

health-related features and clinical data. 

To address this challenge, we propose a neural network architecture composed of three main layers: the Input Layer, 

the Hidden Layer, and the Output Layer (see figure 9). This architecture is further enhanced by a specialized 

Classification Neuron situated within the Output Layer, responsible for making the final binary decision. The Input 

Layer functions as the entry point of the model and contains ten nodes that receive the initial input data, including the 

individual’s medical and lifestyle features. These features serve as the foundational information used for stroke 

prediction. 

 

Figure 9. Basic Neural Network Architecture build from scratch 

Following the Input Layer, the Hidden Layer also consists of ten nodes. This layer performs the core computational 

tasks by processing the input data, learning complex patterns, and capturing nonlinear relationships that may be 

indicative of stroke risk. The transformation of data at this stage is critical for effective learning. The Output Layer, 

comprising ten nodes as well, aggregates and refines the processed information from the Hidden Layer. It prepares the 

data for final classification, generating intermediate outputs that reflect the learned patterns. At the core of the 

classification process lies the Classification Neuron within the Output Layer. This neuron synthesizes the intermediate 

outputs and makes the final decision regarding whether the individual falls into the high-risk or low-risk category. By 

structuring the network in this way, the proposed model aims to achieve high accuracy while maintaining 

interpretability in stroke prediction tasks. 

The Classification Neuron is responsible for producing the final binary prediction: Class 1 (indicating an individual is 

at risk of a heart stroke) or Class 0 (indicating an individual is not at risk). This neural network architecture is designed 
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to learn from the input data, extract relevant features, and use these features to make an informed classification decision 

regarding heart stroke risk. It combines the power of deep learning [45] with binary classification to aid in early heart 

stroke prediction, contributing to better healthcare and preventive measures. 

The operation of the neural network proceeds through a series of well-defined computational steps designed to enable 

effective learning and accurate prediction [46]. Initially, the network’s parameters—comprising weights and biases—

are randomly initialized. This randomization is crucial to prevent training issues such as vanishing or exploding 

gradients, which can impede the learning process in deep networks. The model architecture employs two distinct 

activation functions to introduce non-linearity: the Rectified Linear Unit (ReLU) is applied in the hidden layer to 

capture complex patterns in the data, while the sigmoid activation function is used in the output layer to constrain 

predictions between 0 and 1, making it well-suited for binary classification tasks. 

During forward propagation, input data denoted as 𝑋 is passed sequentially through the layers of the network. The 

model computes activations for both the hidden layer (𝑎ℎ𝑖𝑑𝑑𝑒𝑛) and the output layer (𝑎𝑜𝑢𝑡𝑝𝑢𝑡). These computations 

involve matrix dot products between the inputs and weights, followed by the addition of biases. Non-linearity is 

introduced by applying the ReLU function in the hidden layer and the sigmoid function in the output layer, ensuring 

the model can capture non-linear relationships in the data. 

In preparation for the learning phase, the derivatives of the activation functions—specifically, the derivatives of ReLU 

and sigmoid—are calculated. These derivatives are essential for the backpropagation algorithm, which updates the 

network parameters by computing the gradients of the loss function with respect to each weight and bias. This process 

relies on the chain rule to propagate error signals backward through the network. 

Parameter updates are then performed using a specified learning rate. The function responsible for this step adjusts the 

weights and biases in the direction that minimizes the loss function, thereby improving the model’s performance 

iteratively over multiple training epochs. The loss is computed using the binary cross-entropy function, which measures 

the difference between the predicted outputs and the actual labels. This function is particularly appropriate for binary 

classification problems, as it penalizes incorrect confident predictions more severely. The exact formulation of the loss 

function is illustrated in figure 10. Alongside loss computation, model performance is evaluated using an accuracy 

metric, which quantifies the proportion of correct predictions across the dataset. 

𝐿 =  
1

𝑛 
 ∑[ 𝑦𝑖 ∗ log(𝑦𝑖) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔 (1 − 𝑦𝑖)] (1) 

 

 

Figure 10. Training Progress of basic Architecture 

Several Machine Learning (ML) and Deep Learning (DL) algorithms have been applied to the task of predicting heart 

stroke risk, each offering different strengths in terms of accuracy, interpretability, and computational efficiency. The 

KNN algorithm predicts stroke risk by evaluating the similarity between individuals’ health profiles. It classifies a new 

individual based on the majority class among its closest neighbors in the dataset. This method is particularly useful for 

capturing localized patterns in the data and is effective when the feature space is well-defined and densely populated 

[39]. 

The Support Vector Classifier (SVC) is employed for its ability to create a well-defined decision boundary between 

high-risk and low-risk individuals. By maximizing the margin between classes, SVC improves the reliability of 

classification in complex, high-dimensional datasets [40]. Random Forest leverages an ensemble of decision trees to 
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improve prediction accuracy and reduce overfitting. It considers multiple health-related features and their interactions, 

and is especially valuable for handling non-linear relationships. Additionally, Random Forest provides insights into 

feature importance, which helps in understanding the most influential factors contributing to stroke risk [41]. 

Logistic Regression serves as a baseline model due to its simplicity and interpretability. It estimates the probability of 

stroke occurrence by modeling the relationship between input features and the binary output. While not as powerful as 

more complex models, it offers clarity in identifying key risk factors and their contributions. XGBoost is a gradient 

boosting algorithm known for its high accuracy and computational efficiency. It is particularly effective in handling 

large-scale healthcare datasets and capturing complex feature interactions. XGBoost often outperforms traditional 

models, especially when fine-tuned with appropriate hyperparameters [42]. 

LightGBM, another gradient boosting framework, emphasizes speed and efficiency. It is capable of handling large 

datasets with categorical variables and is optimized for low memory usage. This makes LightGBM especially suitable 

for medical applications where fast and scalable models are needed [43]. AdaBoost improves prediction by combining 

multiple weak classifiers into a strong one. It pays special attention to difficult-to-classify instances, often those 

representing the minority class. This makes it particularly valuable in imbalanced datasets, such as those common in 

stroke prediction tasks [44]. To evaluate the performance of these models, a comparative study was conducted. Each 

model was tested on a dataset using common evaluation metrics, including precision, recall, F1-score, accuracy, and 

ROC-AUC. The results are summarized in table 2. 

Table 2. Comparative Study of ML and DL Algorithms 

The proposed Feed-Forward Neural Network (FFN) model demonstrated superior performance in terms of overall 

accuracy (93%) and ROC-AUC score (0.797), outperforming all traditional ML models. It also maintained strong 

balance across precision, recall, and F1-score, especially for the majority class (Class-0), while showing improvement 

in correctly identifying high-risk individuals in the minority class (Class-1). 

4. Results and Discussion 

4.1. Comparative Analysis of Different Models Used in This Study 

Heart attacks are dangerous medical conditions that can have serious repercussions if they are not promptly identified 

and treated. Early prediction of individuals at risk of experiencing a stroke is crucial for timely intervention and 

prevention [45]. This binary classification task aims to determine whether an individual is at risk of a heart stroke 

(Class 1) or not (Class 0) based on their health-related features and data. 

Among the models in table 2, The proposed FFN demonstrates strong performance for Class 0 (individuals not at risk 

of heart stroke) with high precision, recall, F1-Score, accuracy, and ROC-AUC.  For Class 1 (individuals at risk of 

Model Class Precision Recall F1-Score Accuracy(%) (K=5) ROC_AUC 

KNN 
Class-0 0.97 0.84 0.90 

82 0.725 
Class-1 0.14 0.50 0.22 

SVC 
Class-0 0.96 0.85 0.90 

83 0.776 
Class-1 0.12 0.40 0.19 

Random Forest 
Class-0 0.98 0.70 0.82 

71 0.816 
Class-1 0.12 0.78 0.21 

Logistic Regression 
Class-0 0.95 0.94 0.013 

81 0.757 
Class-1 0.11 0.38 0.17 

XGBoost 
Class-0 0.96 0.94 0.95 

90 0.768 
Class-1 0.11 0.14 0.12 

LightGBM 
Class-0 0.96 0.90 0.93 

87 0.771 
Class-1 0.15 0.34 0.20 

AdaBoost 
Class-0 0.96 0.92 0.94 

88 0.739 
Class-1 0.13 0.24 0.17 

FFN (Proposed) Class-0 0.97 0.96 0.97 93 0.797 
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heart stroke), several models, including KNN, Random Forest, and XGBoost, exhibit relatively high recall, indicating 

that they are good at capturing individuals at risk. 

Logistic Regression, while having high precision for Class 0, has low recall for Class 1, indicating that it may struggle 

to identify individuals at risk effectively. LightGBM, XGBoost, and AdaBoost also show competitive performance 

metrics, with strengths in different aspects of classification. Figure 11 shows the ROC curves of various ML models 

and figure 12 shows the confusion matrices for all the ML models used for comparison. Confusion matrices are valuable 

tools for understanding model performance in binary classification tasks, such as heart stroke prediction.  

   

   

  
Figure 11. ROC Curves of various ML models 

Figure 12 illustrates the confusion matrices of various machine learning models used for stroke prediction, providing 

insight into each model's classification performance. Each matrix displays the number of true negatives (correctly 

predicted non-stroke cases), false positives (non-stroke cases misclassified as stroke), false negatives (missed stroke 

cases), and true positives (correctly identified stroke cases). Among the models, Random Forest stands out by achieving 

the highest number of true positives (39), indicating its strength in identifying stroke cases. However, it also produces 

the highest number of false positives (287), which may lead to unnecessary alarms. Conversely, XGBoost records the 

lowest false positives (55) but significantly underperforms in detecting strokes, with only 7 true positives and 43 missed 

cases. 

Other models show varying trade-offs. KNN and SVM offer balanced performance with moderate false positive and 

false negative rates. Logistic Regression performs similarly but slightly worse in correctly identifying stroke cases. 

LightGBM and AdaBoost fall in between, with LightGBM favoring fewer false positives and AdaBoost achieving 

slightly better detection of true positives. In clinical settings where missing a stroke is critical, models like Random 

Forest may be preferred. However, if avoiding false alarms is the priority, conservative models like XGBoost or 

LightGBM are more suitable. The choice of model should align with the specific clinical objective—maximizing 

sensitivity or specificity. 
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Figure 12. Confusion Metrics of various ML models 

Table 3 helps you compare the performance of machine learning models based on their average accuracy (or other 

metrics) obtained through cross-validation. While CV Mean indicates the overall performance, Std gives you an idea 

of the model's stability and consistency. The choice of the best model depends on the specific requirements of your 

heart stroke prediction task and the trade-offs between accuracy and stability. 

Table 3. Comparative Study of ML Algorithms when K=10 

Model CV Mean SD 

Logistic Regression 0.951468 0.009295 

SVC 0.951272 0.010372 

Random Forest 0.948728 0.010783 

XGB 0.943640 0.012494 

LGBM 0.946771 0.009295 

KNeighbors 0.945597 0.011098 

AdaBoost 0.949511 0.010458 

FFN (Proposed model) 0.955642 0.009059 

In this study, a comprehensive evaluation of several machine learning models is performed to assess their performance 

in a predictive task. The primary goal was to determine the most suitable model for the given problem. To ensure a 

robust assessment of these models, we employed cross-validation, a widely used technique in machine learning. We 

conducted cross-validation experiments with two different values of k, namely k=5 in Table 2 and k=10 (table 3). The 

choice of k in cross-validation affects how the data is split into training and validation sets. A higher value of k (e.g., 

k=10) results in more folds and finer granularity in the cross-validation process. We observed that when we set k=10, 

the machine learning models consistently achieved higher accuracy compared to the k=5 scenario. This implies that 

the models' performance improved when we increased the number of folds and is shown in figure 13. 
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Figure 13. Accuracy Distribution Visualized Using Box Plots for ML Models 

5. Conclusion 

In conclusion, our study has culminated in the development of a dedicated neural network model for heart stroke 

prediction. This model was subjected to rigorous evaluation and compared against a range of machine learning models. 

The comparison of models, as indicated by table 2 and table 3, highlights the promising potential of our proposed FFN 

model in the domain of heart stroke prediction. These Tables illustrate that our proposed FFN model exhibits 

outstanding performance, with high precision, recall, and F1-scores for both classes (having and not having anemia). 

Furthermore, the FFN model achieves an impressive accuracy of 93% in a 5-fold cross-validation setting. This 

exceptional performance signifies the potential for more accurate and reliable heart stroke prediction, which could be 

a significant contribution to advancements in healthcare and patient well-being. The comparative analysis emphasizes 

the superiority of our model over other traditional machine learning techniques. 

For future recommendations, we suggest further validation on larger and more diverse datasets to enhance the 

credibility of the FFN model. Collaboration with healthcare professionals to integrate the FFN model into clinical 

practice for real-time patient risk assessment is crucial. Continuous improvement of the model to accommodate 

emerging medical insights and data is also advised. Ethical considerations should ensure the ethical use of patient data 

and compliance with privacy regulations. Developing a user-friendly interface for healthcare providers to easily access 

and interpret model predictions is essential for practical implementation. 
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