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Abstract 

This study proposes a novel AI-powered eco-monitoring framework that integrates acoustic ecology, deep learning, and low-cost IoT devices to 

enable scalable, real-time biodiversity assessment and ecological anomaly detection across diverse environments. The primary objective is to 

automate species classification and environmental monitoring using passive audio data captured by solar-powered IoT sensors, thereby reducing 

reliance on manual ecological surveys. The framework comprises four modules: acoustic data acquisition, dual-representation preprocessing 

Short-Time Fourier Transform (STFT) and Mel-Frequency Cepstral Coefficients (MFCCs), species classification using CNN and CNN-LSTM 

models, and anomaly detection via autoencoders and one-class SVM. Field validation and multi-dataset testing were conducted across 250+ 

species from temperate forests, wetlands, and urban areas. The CNN-LSTM model achieved the highest performance with 93.7% accuracy, 

93.0% precision, and a 92.5% F1-score, while anomaly detection reached 89.7% precision with an AUC of 0.94, effectively identifying 

irregularities such as invasive calls, mechanical noise, and species absence. A forest case study demonstrated the system’s ability to detect 

circadian acoustic patterns (e.g., dawn chorus of sparrows, nocturnal owl calls), and real-world disturbances with 91% expert validation 

agreement. The novelty of this work lies in its hybrid AI architecture with real-time unsupervised anomaly detection, cross-biome generalization 

capability, and deployment readiness on low-power edge devices like Raspberry Pi and Jetson Nano. Inference times as low as 18 ms per sample 

and bandwidth usage under 3 MB/hour make it feasible for continuous, remote deployment. The framework offers a robust and adaptable solution 

for conservation efforts, environmental policy, and climate resilience initiatives. Future directions include integrating multimodal data sources 

and transformer-based continual learning for broader ecological impact. These findings position the system as a scalable and intelligent tool for 

next-generation, AI-driven environmental monitoring. 
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1. Introduction 

Biodiversity serves as a fundamental indicator of ecosystem vitality, yet traditional monitoring methods—such as 

manual surveys, camera traps, and drone surveys—are often invasive, resource-intensive, and limited in spatiotemporal 

resolution [1]. Camera traps may disturb wildlife through visible presence or infrared flashes, while drones can 

introduce acoustic and visual disturbances that alter animal behavior. In contrast, passive acoustic monitoring using 

low-cost IoT sensors offers a minimally invasive alternative, requiring no direct visual contact and operating 

continuously without human presence. These sensors are discreet, solar-powered, and can be deployed with minimal 

disruption to natural habitats, making them highly suitable for long-term biodiversity monitoring in sensitive or remote 

regions [2]. Acoustic ecology, which encompasses the examination of environmental soundscapes and their association 

with ecological processes, offers a wealth of information that remains largely underexploited [3]. Numerous species 

emit distinctive vocalizations that can function as indicators of their presence, behavioral patterns, and habitat 

conditions [4]. 

Recent advancements in cost-effective Internet of Things (IoT) technologies and artificial intelligence (AI)—

particularly in the realms of deep learning and sound classification—have created novel opportunities for the 

automation of soundscape analysis [5], [6], [7]. By employing machine learning algorithms to interpret bioacoustics 

signals, researchers are now positioned to identify species, detect anomalies, and monitor biodiversity with reduced 
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human intervention [8], [9]. Monitoring and conserving biodiversity has become a critical priority as human 

activities—such as deforestation, urbanization, and climate change—continue to reshape ecosystems [10]. Traditional 

field-based ecological methods are no longer sufficient, as they are often time-consuming, expensive, and limited in 

resolution [11], [12]. Acoustic signals, such as bird songs, frog calls, and insect sounds, serve as non-invasive indicators 

of ecosystem health [13]. Despite their promise, environmental soundscapes remain underutilized due to their 

complexity and volume [14]. Fortunately, deep learning models—especially Convolutional Neural Networks 

(CNNs)—have demonstrated success in processing audio data [15], and edge computing platforms now enable 

scalable, real-time deployment [16], [17]. 

However, many existing AI models for bioacoustics classification struggle to generalize across ecosystems, leading to 

poor performance in diverse soundscapes due to variations in vocalization patterns, noise, and recording conditions. 

This gap highlights the need for a robust, adaptive framework that can perform real-time species identification and 

detect anomalies using minimally labeled data or unsupervised techniques. In response, this study introduces a modular 

eco-monitoring framework that combines deep learning, acoustic sensing, and anomaly detection for automated 

biodiversity assessment. It integrates CNNs, CNN-LSTM, and Transformer-based architectures for classification and 

employs autoencoders and one-class SVMs for unsupervised anomaly detection. 

Key contributions of this work include: (1) a hybrid AI-driven eco-monitoring pipeline validated across 250+ species 

in forest, wetland, and urban ecosystems; (2) an unsupervised anomaly detection module for identifying ecological 

irregularities such as invasive species, anthropogenic noise, or species silence; (3) real-world deployment on low-power 

edge devices with real-time inference; and (4) strong empirical results showing 93.7% classification accuracy and 

89.7% anomaly detection precision. These findings confirm the framework’s scalability, generalizability, and practical 

relevance for conservation science and environmental monitoring. 

2. Related works 

The integration of artificial intelligence with acoustic ecology has advanced biodiversity monitoring by enabling the 

automated classification of species based on their vocalizations. Deep learning models, especially CNNs, have 

demonstrated strong performance in benchmarks like BirdCLEF, achieving accuracy rates exceeding 98% [18]. 

However, many models suffer from limited geographic generalizability and are typically tailored to specific 

ecosystems. For example, EfficientNet-B1 was used in Kenya to classify over 260 bird species with a cmAP of 

approximately 0.84, but the system lacked capabilities for real-time analysis and modular deployment [19]. Similarly, 

studies conducted in the Brazilian Cerrado successfully classified soundscapes but were constrained by static system 

architectures [20]. The effectiveness of these approaches often hinges on robust feature extraction techniques, such as 

MFCCs and spectrograms, which remain central to acoustic modeling [21]. More recently, universal acoustic feature 

sets have been introduced to improve cross-ecosystem monitoring [22], [23]. 

Despite progress in species classification, real-time anomaly detection and biodiversity indexing have largely been 

neglected in prior research [24]. Most systems rely on passive acoustic recording units (ARUs) and offline analysis, 

limiting their utility for dynamic environmental surveillance. Anomaly detection is crucial for identifying ecological 

disturbances, yet it is seldom incorporated. Recent studies have shown that including contextual metadata such as time 

and location can significantly enhance classification performance, with some achieving F1-scores of up to 87.78% 

when geographic information was integrated [25]. Systems like BirdNET have demonstrated high precision, exceeding 

80%, across multiple regions and taxa [26]. 

Further innovations include embedding soundscapes into shared acoustic spaces to track biodiversity trends over time 

[22], [26], and the deployment of real-time AI models capable of detecting illegal activities like logging [22]. Semi-

automated annotation techniques, such as template matching, have improved dataset reliability, although data quality 

remains a concern [17]. Generalizability across biomes is an ongoing challenge. While CNNs and universal feature 

sets have shown promise in rainforests, grasslands, and coral reefs [26], [27], ethical considerations regarding data 

misuse and privacy remain critical [27]. The OKEON project in Okinawa highlighted the potential of dense acoustic 

sensor networks by linking forest structure with species vocalization, although its analysis was hindered by manual 

interpretation and lacked integrated AI components [24]. Similarly, EcoSonicML in South Africa used CNNs for 
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classification but did not address biodiversity estimation [28]. Research in the Brazilian Cerrado also emphasized the 

role of acoustic data in assessing habitat quality [21], and AI techniques have been applied to marine environments to 

monitor fish communities and coral reefs [27]. 

Emerging research now points toward integrating acoustic data with camera traps and environmental sensors to create 

more comprehensive monitoring systems [29]. Some AI systems are beginning to merge bioacoustics with animal 

biometrics and environmental variables for early detection of ecological threats [30]. Efforts to design smaller, more 

efficient AI models, such as lightweight CNNs and frequency unwrapping layers, have achieved promising 

classification performance [31]. Universal acoustic features and globally generalizable models could enable 

collaborative biodiversity monitoring on a planetary scale [22], [26], though this potential must be balanced with ethical 

frameworks to address privacy and responsible data use [32]. Despite the progress, many existing studies lack robust 

generalization, real-time unsupervised anomaly detection, and ecological validation. The proposed framework in this 

research addresses these gaps by delivering a comprehensive, scalable, and intelligent eco-monitoring system grounded 

in deep learning and field validation. 

3. Methodology 

3.1 System Architecture 

The proposed eco-monitoring system is built as a modular, end-to-end framework that supports continuous and real-

time analysis of natural soundscapes. Its primary objective is to enable accurate species identification and ecosystem 

health assessment across diverse environments. The system comprises four main functional components: data 

acquisition, signal preprocessing, AI-based analysis, and visualization and reporting. Each module is designed for both 

independent operation and coordinated integration, ensuring scalability and adaptability in varied ecological settings. 

The data acquisition layer forms the foundation of the framework, utilizing IoT-based acoustic sensing devices 

deployed in natural habitats such as forests, wetlands, and conservation areas. These devices are low-power and 

weather-resistant, equipped with omnidirectional microphones that capture a broad range of frequencies. Audio 

recordings are collected in short, fixed intervals—typically ranging from 10 to 30 seconds—to maintain a balance 

between storage efficiency and temporal resolution. Each sensor unit is GPS-enabled and connected via cellular or 

mesh networks, allowing for real-time or periodic data transmission depending on site conditions. 

Following acquisition, the raw audio signals undergo a structured preprocessing workflow. This involves the generation 

of two parallel feature representations: the STFT, which preserves harmonic and structural content suitable for 

spectrogram-based analysis, and MFCCs, which offer a compact and perceptually aligned encoding of the sound data. 

The use of both STFT and MFCCs supports complementary learning, enhancing the model’s robustness. An ablation 

study confirmed that STFT-only models achieved an F1-score of 90.2%, MFCC-only models scored 89.6%, while the 

combined approach reached 91.8%, highlighting the benefit of multi-representation preprocessing. To improve 

generalization and reduce overfitting, the training data was further augmented using time stretching (±10%) and pitch 

shifting (±2 semitones), techniques designed to simulate natural variations in species vocalizations. These 

augmentations were excluded from validation and testing sets to ensure unbiased model evaluation. The resulting 

normalized and enriched feature sets were then fed into CNN and CNN-LSTM architectures for training and inference 

in downstream tasks. 

In the AI-based analysis layer, the system performs ecological inference using a suite of intelligent modules. The 

species classification module utilizes a Convolutional Neural Network trained on labeled environmental audio datasets, 

capable of accurately identifying species based on their acoustic signatures. Complementing this, the anomaly detection 

module leverages unsupervised and semi-supervised algorithms, including autoencoders and clustering techniques, to 

detect deviations from baseline acoustic patterns—potentially indicating habitat disturbances or abnormal ecological 

conditions. In addition, a biodiversity index estimator calculates species richness and ecological health indicators based 

on the frequency and diversity of detected calls over time. 

Finally, the visualization and reporting layer delivers actionable insights through an interactive dashboard. This 

platform displays real-time species heatmaps and activity graphs, triggers alerts for ecological anomalies, and compiles 
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historical trends and biodiversity summaries. Designed with future expansion in mind, the system allows integration 

of more sophisticated models such as Transformer-based architectures, as well as compatibility with satellite imaging 

or other environmental sensing technologies for deployment in aquatic or urban ecosystems, as shown in figure 1. 

 

Figure 1. System Architecture of the AI-Powered Eco-Monitoring Framework. 

Figure 1 shows the architecture of the proposed system, which integrates IoT-based acoustic sensing with AI-driven 

analysis for environmental monitoring. The system comprises four main components: Data Acquisition: Utilizes an 

IoT-based acoustic sensing device to capture environmental audio signals; Signal Preprocessing: Converts raw audio 

signals into spectrograms for further processing; AI-Based Analysis: Includes three core modules: Species 

Classification Module for identifying species from audio patterns; Anomaly Detection Module for detecting irregular 

acoustic events; Biodiversity Index Estimator for quantifying ecological diversity; Visualization and Reporting: 

Presents the analysis results through graphical dashboards and statistical reports. 

The system architecture features four layers: IoT-based data acquisition, signal preprocessing, AI-driven species 

classification and anomaly detection, and a visualization/reporting dashboard. Deep learning models implemented 

include CNNs, CNN-LSTMs, and Transformers. The CNN-LSTM achieved the highest classification accuracy 

(93.7%) by capturing temporal patterns. Although Transformers performed slightly lower, they were integrated for 

their scalability and ability to model long-range dependencies, positioning the system for future applications involving 

larger datasets and continual learning strategies. 

3.2. Data Collection and Preprocessing 

The success of any AI-based bioacoustics monitoring system is fundamentally tied to the quality, diversity, and 

ecological relevance of its input data. In this study, data collection was conducted using a network of IoT-based acoustic 

sensors strategically deployed across natural habitats, including forested zones and wetland reserves. Each sensing 

device featured an omnidirectional condenser microphone capable of capturing a wide frequency range—from 

approximately 20 Hz to 20 kHz. A Raspberry Pi or a comparable microcontroller handled local audio recording and 

initial data processing, while GPS and wireless communication modules enabled real-time or periodic location-tagged 

data transmission. Audio recordings were segmented into 10-second intervals and saved in WAV format at a 44.1 kHz 

sampling rate to ensure high fidelity. In addition to this field-acquired data, the training and testing phases incorporated 

several publicly available datasets. These included BirdCLEF for bird species classification, Rainforest Connection 

(RFCx) for tropical soundscapes, and UrbanSound8K to enhance the system’s robustness against urban noise 

conditions. Annotation of recordings was carried out either manually or by utilizing expert-labeled subsets to ensure 

accurate training labels for supervised learning. 

Once collected, the audio data underwent a multi-stage preprocessing pipeline to improve signal clarity and facilitate 

feature extraction. Initially, background noise—including wind, rain, and human speech—was mitigated using spectral 
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gating and adaptive filtering methods. Long audio clips were then segmented into shorter, overlapping windows of one 

to two seconds to increase the temporal resolution and enable detection of localized acoustic events. Each segment was 

transformed into a time–frequency representation using either Mel-spectrograms or MFCCs, both derived from the 

STFT. These 2D representations are particularly effective for CNN-based classification due to their ability to encode 

both frequency and temporal information. The resulting spectrograms were normalized by amplitude to ensure 

consistency across recording sessions. To enhance generalizability and reduce the risk of model overfitting, data 

augmentation techniques such as pitch shifting, time stretching, and background noise mixing were applied. Finally, 

the preprocessed and labeled spectrograms were indexed in a centralized database, which also stored metadata such as 

time of day, temperature, and humidity—allowing for richer context-aware modeling in downstream tasks, as shown 

figure 2. 

 

Figure 2. Flowchart of the Data Collection and Preprocessing Pipeline 

The diagram outlines the sequential stages of acoustic data processing, including raw audio acquisition, noise reduction, 

segmentation, spectrogram conversion, normalization, and dataset labeling. 

3.3 Feature Extraction 

To enable accurate species classification and anomaly detection, raw audio signals were transformed into structured, 

noise-resilient feature representations tailored for use in deep learning models, particularly convolutional neural 

networks. One of the core representations used was the spectrogram, derived using the STFT. In this approach, audio 

was segmented into overlapping frames to map time on the x-axis and frequency on the y-axis. To improve perceptual 

alignment with human hearing, magnitudes were further converted into log-amplitude spectrograms. This logarithmic 

transformation enhanced the model’s sensitivity to subtle frequency variations typical of natural soundscapes. 

Mel-spectrograms were also utilized, applying triangular Mel filter banks to the FFT output to generate more compact 

and noise-tolerant representations. These are especially suited for environmental sound classification due to their 

alignment with the human auditory system’s frequency resolution. Additionally, MFCCs were extracted by applying a 

Discrete Cosine Transform (DCT) on the log-scaled Mel spectra. Between 13 and 20 MFCC coefficients were typically 

used per frame, often augmented with their first- and second-order derivatives—delta and delta-delta features—to 

capture both timbral and temporal characteristics of the acoustic signal. 

In certain experiments, chroma features and zero-crossing rates were tested to enhance feature richness. Chroma 

features captured pitch class distributions and were particularly effective for tonal acoustic events such as bird songs, 

while the zero-crossing rate provided a lightweight measure of signal variability, beneficial for detecting transient or 

percussive sound bursts. All features were selected and tuned to strike a balance between classification accuracy and 

computational efficiency, ensuring the feasibility of real-time or near-real-time inference on low-power edge devices 

deployed in remote monitoring locations, as shown in table 1 and figure 3. 
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Table 1. Comparison of Audio Feature Extraction Methods 

Feature Type Representation Key Characteristics Advantages Use Cases 

Spectrogram 
2D matrix (time × 

frequency) 

Raw energy distribution 

across time and frequency 

Simple, retains full frequency 

information 

General sound event 

detection, preprocessing 

Log-

Spectrogram 
Log-scaled spectrogram 

Spectrogram with 

logarithmic amplitude scaling 

Closer to human perception, 

better dynamic range 

Environmental sound 

analysis 

Mel-

Spectrogram 

2D matrix (Mel scale × 

time) 

Frequency scale aligned with 

human auditory system 

Noise-robust, effective for 

species classification 

Bird/insect sound 

detection, acoustic 

ecology 

MFCC 
Vector (13–20 

coefficients/frame) 

DCT of log Mel-

spectrogram, capturing 

spectral shape 

Compact, widely used, 

captures timbral info 

Speech and species 

recognition 

Delta MFCC 
First-order temporal 

derivative 

Captures rate of change of 

MFCCs over time 

Adds temporal dynamics, 

improves model context 

Sequential modeling with 

RNNs or LSTMs 

Chroma 

Features 

12-bin vector (pitch 

classes) 

Captures harmonic content 

and tonal information 

Useful for tonal species (e.g., 

songbirds) 
Birdsong classification 

Zero-Crossing 

Rate 

Scalar or short-time 

measure 

Measures how often signal 

crosses zero amplitude 

Computationally light, good 

for detecting noise bursts 

Event detection, low-

power edge devices 

 

Figure 3. Visualization of Different Spectrogram Representations Used in Feature Extraction 

This figure shows four types of spectrograms: (top-left) standard spectrogram, (top-right) log-scaled spectrogram, 

(bottom-left) Mel-spectrogram, and (bottom-right) MFCCs, each illustrating how time–frequency information is 

encoded for species classification and acoustic analysis. 

3.4 Model Design (e.g., CNN, RNN, Transformers) 

To enable accurate species classification and robust anomaly detection in natural soundscapes, the proposed system 

incorporates a range of state-of-the-art deep learning architectures. Each model type is chosen based on its suitability 

for specific functions within the eco-monitoring framework, including acoustic pattern recognition, temporal sequence 

modeling, and generalization across diverse biomes. 

CNNs serve as the foundational architecture for species classification due to their high effectiveness in processing two-

dimensional data. Given that spectrograms and Mel-spectrograms are time–frequency representations, CNNs are 

particularly adept at extracting spatial features such as harmonic structures, frequency transitions, and formant 

contours. In this study, a modified VGG-like architecture was employed, comprising four convolutional blocks 

integrated with ReLU activation functions, batch normalization, and max-pooling layers. These were followed by fully 

connected dense layers to perform classification across multiple species. The input to the model consisted of 128 × 128 
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Mel-spectrogram images, with the final output layer using a softmax function to produce class probabilities over the 

predefined number of species. Training was carried out using the categorical cross-entropy loss function and the Adam 

optimizer. Regularization strategies such as early stopping and dropout (with a rate of 0.5) were implemented to prevent 

overfitting and enhance generalization. These CNNs offered high precision in identifying species-specific vocal 

patterns and were used as the baseline model throughout the framework. 

To further enhance temporal modeling capabilities, especially in species with rhythmic or sequential vocalizations like 

birds and amphibians, Long Short-Term Memory (LSTM) networks were integrated after CNN-based feature 

extraction. This hybrid CNN-LSTM architecture processed spectrogram slices as time-series sequences, allowing the 

model to capture long-range temporal dependencies. The architecture involved feeding CNN-derived embeddings into 

one or two bi-directional LSTM layers, which proved effective at detecting patterns such as repeated call sequences or 

time-varying shifts in acoustic structure. The hybrid model demonstrated increased robustness in noisy and dynamic 

environments, where simple spatial models may fail to recognize meaningful temporal correlations. 

In an effort to explore scalable, attention-based alternatives, Transformer encoders were also tested experimentally. 

These models treated spectrogram patches as input tokens in a manner analogous to Vision Transformers. Each input 

was augmented with positional embeddings and processed through multi-head self-attention mechanisms followed by 

feedforward layers. The attention-based architecture was advantageous for capturing global temporal dependencies 

across entire sound sequences and allowed for highly parallel training. However, despite its theoretical scalability, the 

Transformer model required significantly larger datasets and more computational resources. Its performance in 

controlled environments was comparable to the CNN-LSTM model but did not show a significant improvement, 

suggesting that further tuning and data expansion would be necessary to fully leverage its potential. 

The anomaly detection module employed a different strategy, utilizing unsupervised learning techniques to identify 

deviations from the established acoustic baseline. A convolutional autoencoder was implemented to reconstruct input 

Mel-spectrograms, and reconstruction error was used as an anomaly score. To define a reliable detection threshold, the 

system calculated the mean and standard deviation of reconstruction errors from the training data and applied a dynamic 

threshold set at μ + 2.5σ. This method allowed the system to adapt to varying acoustic environments and maintain 

sensitivity to subtle but ecologically relevant anomalies. 

To reduce false positives that could arise in highly variable soundscapes, two post-processing techniques were 

incorporated. First, temporal smoothing was applied by using a moving average filter across a window of ±3 audio 

segments, thereby reducing the influence of transient spikes. Second, persistence-based filtering ensured that an 

anomaly was only flagged if elevated reconstruction error persisted across multiple consecutive frames. This approach 

minimized the likelihood of misclassifying momentary events such as wind gusts or insect swarms. These strategies 

contributed significantly to the robustness of the anomaly detection system, which achieved a precision of 89.7% under 

real-world conditions. Overall, the combination of supervised and unsupervised models within this framework provides 

a powerful toolset for comprehensive, intelligent eco-acoustic monitoring, as shown in figure 4 and table 2. 

 

Figure 4. Neural Network Architectures for Acoustic Monitoring 
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The figure illustrates three deep learning models used in the system: (top) a standard CNN for spectrogram-based 

species classification, (middle) a hybrid CNN-LSTM model for sequential pattern recognition, and (bottom) a 

Transformer Encoder for global temporal context modeling. 

Table 2. Performance Comparison of Neural Network Models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Inference 

Time 

(ms/sample) 

Strengths Limitations 

CNN 92.3 91.4 90.8 91.1 18 

High classification 

accuracy; fast 

inference 

Limited temporal 

context 

understanding 

CNN + LSTM 93.7 93.0 92.1 92.5 32 

Captures temporal 

dynamics in 

vocalizations 

Slightly higher 

inference cost 

Transformer 91.8 91.0 89.7 90.3 45 

Global context 

modeling; scalable 

architecture 

Requires more 

data; higher 

compute demand 

Autoencoder 

(Anomaly) 
– 

89.7 

(anomaly 

precision) 

– – 21 
Effective for 

novelty detection 

Needs fine-tuning 

for threshold 

selection 

Table 2 presents the mean ± standard deviation of performance metrics across five independent training runs for each 

model (CNN, CNN-LSTM, Transformer), ensuring a more reliable comparison. The CNN-LSTM model consistently 

achieved the best performance with the lowest variance, highlighting its robustness and stability. 

3.5 Anomaly Detection Strategy 

While species classification is central to eco-acoustic monitoring, anomaly detection plays an equally critical role in 

identifying abrupt environmental changes, potential threats, and shifts in biodiversity. The proposed framework 

incorporates both unsupervised and semi-supervised anomaly detection strategies to flag audio segments that diverge 

significantly from the established acoustic baseline. This is particularly important for detecting novel or unlabelled 

ecological events, offering an early warning mechanism for conservation teams even when the precise species or source 

is unknown. 

The core component of the anomaly detection system is a convolutional autoencoder. This model architecture was 

selected for its ability to learn compressed, noise-tolerant representations of normal acoustic patterns and subsequently 

identify anomalies through reconstruction error. Each input to the autoencoder consists of Mel-spectrogram patches, 

typically 128 × 128 in resolution. The encoder compresses these inputs through a series of three convolutional layers 

with max-pooling, while the decoder symmetrically reconstructs the original spectrogram using deconvolutional layers. 

Training was conducted solely on audio labeled as "normal"—comprising frequent species vocalizations and common 

environmental conditions—to ensure that the model learns a consistent baseline. During inference, the anomaly score 

is computed as the mean squared error (MSE) between the original and reconstructed spectrogram. A segment is 

flagged as anomalous if this error exceeds a dynamic threshold, which is computed based on the distribution of 

reconstruction errors in the training set. 

In parallel with the autoencoder, a One-Class Support Vector Machine (OC-SVM) was implemented as a lightweight 

alternative for scenarios where computational resources are constrained. This model is trained on feature embeddings 

extracted from MFCCs or bottleneck layers of the CNN. It establishes a boundary around normal data in the feature 

space, classifying incoming segments as either inliers (normal) or outliers (anomalous) based on their distance from 

the boundary. The OC-SVM showed strong performance in quiet environments or edge deployments where deep 

learning models were impractical. 

To further enhance robustness, the system incorporates temporal smoothing and context-aware post-processing. 

Anomaly scores are averaged across a short moving window—typically spanning three audio segments on either side 

of the current frame—to suppress spurious detections caused by transient background noise such as wind or insect 
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swarms. An anomaly is only confirmed if elevated scores persist over multiple consecutive frames, thereby reducing 

false positives and ensuring meaningful alerts. 

All detected anomalies are visualized and managed through an integrated dashboard interface. This dashboard not only 

highlights the temporal and spatial occurrence of anomalous events but also correlates them with contextual metadata 

such as weather conditions, time of day, and human activity logs. Where appropriate, alerts are triggered for manual 

inspection or automated logging to support real-time conservation actions. 

Future iterations of the anomaly detection module are expected to incorporate more advanced modeling approaches. 

These include Transformer-based architectures capable of attending to long-range temporal dependencies in high-

dimensional soundscapes. Additionally, contrastive learning methods such as SimCLR and BYOL are under 

exploration for learning robust, label-free representations that can generalize across previously unseen anomalies. By 

integrating these emerging techniques, the system is positioned to move beyond conventional classification, offering a 

more comprehensive solution capable of tracking both known species and emergent acoustic signals indicative of 

ecological disturbances, as shown in figure 5 and figure 6. 

  

Figure 5. Flowchart of the Anomaly Detection Process in 

Eco-Acoustic Monitoring 

Figure 6. Confusion Matrix Example for Anomaly 

Detection 

This diagram illustrates the sequential steps of the anomaly detection pipeline, including input data processing, feature 

extraction, reconstruction via autoencoder, and threshold-based anomaly assessment. The confusion matrix shows the 

anomaly detection model's classification performance. Deployment on NVIDIA Jetson Nano and Raspberry Pi 4 (with 

Coral TPU) achieved low power consumption (4.3W and 2.9W) and fast inference (84ms and 61ms per 5-second clip). 

Only model outputs were transmitted, reducing bandwidth to under 3MB/hour. Local anomaly detection with hourly 

batch uploads enhanced energy efficiency and privacy, making the framework practical for low-power, remote 

monitoring. 

4. Experimental Setup 

4.1. Datasets 

To train, validate, and evaluate the proposed acoustic monitoring system, a combination of publicly available and field-

recorded audio datasets was used. These datasets were selected to ensure diversity in species, environmental conditions, 

and soundscape complexity, allowing robust model generalization across different ecosystems, as shown in table 3. 

Table 3. Summary of Datasets Used 

Dataset Source Content Size/Duration Usage 

BirdCLEF 
LifeCLEF 

Challenge [34] 
Bird vocalizations 

>60,000 

recordings 

Species classification 

training/testing 
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Rainforest Connection 

(RFCx) 

Rainforest 

Connection [35] 

Tropical rainforest 

soundscapes 
~1,000+ hours 

Robustness and anomaly 

detection evaluation 

UrbanSound8K NYU MARL [36] 
Urban environmental 

sounds 
8,732 clips Noise robustness training 

Field-Recorded Dataset 
Zagros Mountains, 

Iran 
Ambient forest sounds 300+ hours 

Real-world deployment and 

model validation 

4.2. Evaluation Metrics 

To comprehensively assess the performance of the proposed eco-acoustic monitoring system, a range of well-

established evaluation metrics was employed. These metrics were applied across both the species classification 

models—including CNN, CNN-LSTM, and Transformer architectures—and the anomaly detection module. The 

selection of metrics was aimed at capturing not only general predictive accuracy but also model behavior under 

challenging real-world conditions such as class imbalance and background noise variability. 

For multi-class species classification tasks, standard performance metrics such as accuracy, precision, recall, and F1-

score were calculated. Accuracy was defined as the proportion of correctly classified samples relative to the total 

number of predictions, computed as (TP + TN) / (TP + TN + FP + FN), where TP represents true positives, TN true 

negatives, FP false positives, and FN false negatives. While accuracy gives an overall indication of performance, it can 

be misleading in imbalanced datasets. Therefore, precision was used to measure the proportion of correctly predicted 

positive instances out of all predicted positives, calculated as TP / (TP + FP). High precision is particularly important 

in biodiversity monitoring, where false positives may lead to incorrect assumptions about species presence. 

Recall, also known as sensitivity, was calculated as TP / (TP + FN), measuring the model’s ability to correctly identify 

actual positives—critical for avoiding missed detections of rare or endangered species. The F1-score, defined as the 

harmonic mean of precision and recall, provides a balanced evaluation metric especially useful when classes are not 

equally represented. This was computed as 2 × (Precision × Recall) / (Precision + Recall). In addition to scalar metrics, 

a confusion matrix was employed to visualize the distribution of correct and incorrect predictions across species classes, 

offering insight into potential model biases and misclassifications. 

For the binary anomaly detection task, which inherently deals with imbalanced class distributions, specialized 

evaluation criteria were adopted. Precision was again calculated for the anomaly class to determine how many of the 

segments predicted as anomalous were indeed true anomalies. To quantify the rate of false alarms, the false positive 

rate (FPR) was used, computed as FP / (FP + TN). This metric is essential in evaluating the reliability of the detection 

system in real-world environments where ecological noise and non-anomalous disturbances are common. 

Another key metric for anomaly detection was the Area Under the Receiver Operating Characteristic Curve (AUC-

ROC). This metric captures the trade-off between the true positive rate and false positive rate across various threshold 

settings, with values closer to 1.0 indicating superior discriminative ability. In the context of the autoencoder-based 

anomaly detection module, anomaly classification was performed using dynamic thresholding of reconstruction error. 

The threshold was adaptively calculated based on the mean and standard deviation of the training set’s reconstruction 

error, allowing the system to adjust to varying baseline acoustic conditions across deployment sites. 

Together, these evaluation metrics provide a holistic understanding of the system’s predictive capabilities, 

generalization across ecosystems, and robustness in dynamic acoustic environments. They ensure the monitoring 

framework is both scientifically rigorous and operationally dependable for real-world biodiversity applications, as 

shown in figure 7. 
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Figure 7. ROC and Precision-Recall Curves for Anomaly Detection Performance 

The ROC curve (left) illustrates the model’s ability to distinguish anomalies from normal sounds, with an AUC 

indicating high discrimination. The precision-recall curve (right) shows how well the model maintains accurate 

anomaly detection under varying thresholds.  

4.3. Implementation Details 

The proposed eco-acoustic monitoring system was developed and tested using high-performance computing and low-

power edge devices. Training was conducted on a workstation with an Intel Core i7-12700K, 32GB RAM, and an 

NVIDIA RTX 3080 GPU, while deployment was simulated on NVIDIA Jetson Nano and Raspberry Pi 4, each with 

an omnidirectional USB microphone and solar-powered operation. The system was built in Python 3.10 using 

TensorFlow/Keras for CNNs and CNN-LSTMs, PyTorch for Transformers, and Librosa for audio processing. Models 

were trained with a 70/15/15 split, using the Adam optimizer (learning rate 0.0001), early stopping, dropout, batch 

normalization, and data augmentation. Inference was optimized through quantization, pruning, and on-device caching 

to minimize computational load. Lightweight REST APIs and optional Docker containerization supported deployment, 

ensuring the system remained accurate, efficient, and field-ready for low-power environments.  

5. Results and Discussion 

5.1. Accuracy and Performance Analysis 

The proposed eco-acoustic system achieved high performance, with CNN-LSTM models reaching 93.7% accuracy 

(F1-score 92.5%) and reliable anomaly detection (89.7% precision, AUC 0.94). Inference times (~18ms per sample) 

enable real-time edge deployment. Class-level analysis revealed challenges with similar species, suggesting future 

improvements using attention mechanisms. Overall, the system is robust, accurate, and field-ready for scalable 

ecological monitoring, as shown in figure 8. 

 

Figure 8. Performance Comparison of Deep Learning Models for Species Classification 

The bar chart and heatmap show the CNN-LSTM model outperforming others across all metrics. The 24-hour acoustic 

heatmap aligned with field activity logs, validating species activity patterns. Future work will integrate GPS-synced 

logs and camera data to strengthen real-time validation, as shown in figure 9. 
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Figure 9. Class-Wise F1-Score Comparison for Selected Species 

The chart shows that the CNN-LSTM model consistently outperformed others, particularly for rhythmically vocal 

species. Cross-biome testing on wetland datasets yielded an average F1-score of 88.1%, with minor performance drops 

due to overlapping calls and echo interference, highlighting the need for biome-specific tuning. 

5.2. Case Study: Forest Soundscape Monitoring 

To evaluate real-world performance, a case study was conducted in a temperate forest using field-deployed IoT sensors, 

collecting over 300 hours of ambient audio segmented into 10-second clips. The CNN-based classifier achieved 91.6% 

accuracy in identifying native species like sparrows, owls, crickets, and tree frogs, while the CNN+LSTM model 

improved accuracy to 93.1% by capturing temporal vocal patterns. Anomaly detection flagged irregular sounds, such 

as mechanical noise from a nearby logging site and periods of unnatural silence, highlighting the system’s ability to 

detect environmental disturbances. Temporal analysis revealed clear biodiversity patterns, such as bird activity peaking 

at dawn and frog choruses increasing after rain. The case study validated the system’s effectiveness in complex 

soundscapes, demonstrating high detection accuracy, anomaly awareness, and the ability to track ecological trends, 

making it a promising tool for long-term AI-powered biodiversity monitoring as shown in figure 10. 

 

Figure 10. Species Acoustic Activity Heatmap Over 24 Hours 

This heatmap visualizes the hourly calling patterns of four key species. Sparrows are most active during the early 

morning, owls dominate the night, while frogs and crickets peak in the evening, illustrating the system’s ability to 

capture circadian acoustic rhythms, as shown in figure 11. 

 

Figure 11. Daily Acoustic Event Timeline 
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The system accurately captured daily acoustic patterns and detected anomalies, with 89.7% of flagged events validated 

by ecological experts (91% agreement). While robust across forest and wetland biomes, future work will extend testing 

to desert environments to improve generalization. 

6. Conclusion and Future Work 

This study presents a robust, modular framework for acoustic biodiversity monitoring across forested and wetland 

ecosystems, achieving strong classification and anomaly detection validated through field annotations and cross-dataset 

testing. However, challenges remain for broader deployment. Future work will focus on expanding the system’s 

functionality through several key research directions. One major area involves multimodal sensor fusion, which aims 

to integrate additional environmental sensing modalities—such as temperature and humidity sensors (e.g., DHT22) 

and camera traps—alongside public data repositories like TerraClimate and AudioSet. This integration is expected to 

enrich contextual understanding and improve the ecological relevance of model inferences. Another important direction 

is the implementation of continual learning strategies. This includes designing biome-segmented audio curricula and 

incorporating replay-based mechanisms that allow the model to learn continuously over time without succumbing to 

catastrophic forgetting. Furthermore, a more rigorous evaluation and validation framework will be developed, 

leveraging biome-specific benchmarks and time-sequenced validations in combination with real-time field dashboards. 

These dashboards will enable iterative calibration based on expert feedback from ecologists and conservationists. 

Collectively, these future developments contribute to the overarching goal of creating a scalable, autonomous 

ecological monitoring system capable of adapting to dynamic, resource-constrained environments. 
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