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Abstract

In recent years, with the development of the Internet, social networking, online banking, e-commerce and other network
applications are growing rapidly. At the same time, all kinds of malicious web pages are constantly emerging. Under the new
situation, the network security threats are distributed, large-scale and complex. New network attack modes are emerging. With
more and more diverse devices accessing the Internet, our life is more intelligent and convenient, but also brings more loopholes
and hidden dangers. Some malicious web pages through a variety of means to lure users to open URL links and conduct
malicious behavior. However, if we can detect the URL of the malicious web page and identify the malicious web page, we can
avoid the problems of content variability and behavior tracking. Therefore, traffic analysis based on various deep convolutional
network model generation algorithms arises at the historic moment, and becomes an important research issue in the field of
Internet security.
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1. Introduction

In recent years, there are countless malicious acts of using malicious web pages to commit crimes on the Internet. It is
reported that nearly half of the web pages are potentially malicious, Malicious web pages launch malicious behaviors
to users by sending a large number of emails containing malicious URLs, phishing and other means, resulting in the
lack of security awareness of users suffering from varying degrees of harm. Therefore, how to effectively and timely
detect malicious web pages has become an important problem to be solved. One common malicious act committed
through malicious web pages is phishing attacks. These attacks involve creating a fake website that appears to be
legitimate, such as a bank or online shopping site, and tricking users into entering their personal information, such as
login credentials or credit card numbers. The attackers then use this information to steal money or identity.

Another malicious act is malware distribution. Malicious web pages can be used to download and install malware
onto a user's device without their knowledge. This malware can range from simple viruses that disrupt a device's
functionality, to more advanced malware such as ransomware, which encrypts a user's files and demands payment to
unlock them. Malicious web pages can also be used to distribute spam emails or spam comments on social media.
These spam messages often contain links to more malicious web pages or attempt to sell fake products or services.

Another malicious act is clickjacking, which involves hiding a button or link on a web page behind a legitimate
element, such as an advertisement. When a user clicks on the legitimate element, they are actually clicking on the
hidden button or link, which can lead them to a malicious web page or perform an unwanted action, such as liking a
page on social media or signing up for a subscription. Malicious web pages can also be used for cyberstalking or
harassment. These web pages can contain personal information about an individual, such as their location or contact
information, and can be used to threaten or intimidate them.
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Finally, malicious web pages can be used for distributing illegal content, such as child pornography or copyrighted
material. These web pages often operate under the radar of law enforcement and can be difficult to track down and
shut down. The main methods of malicious web page identification include detecting the URL of the webpage and
detecting the content and behavior of the webpage. This paper focuses on the detection of malicious web URL
technology, The next part will summarize the general technical steps of traffic analysis: through the use of deep
learning model generation algorithm to detect HTTP traffic, use the text features and image features crawled by URL,
construct a multi-layer learning network for URL structural features, and complete the detection and classification of
malicious URL.

2. Algorithm Implementation

The HTTP traffic analysis technology model is shown in Figure 1. The input of the model is URL, and the output is
the detection result of the URL.

Figure. 1. Flow Analysis Technology Model

Input: the input model is a complete URL. However, considering the accuracy factor, we will extract URL features
from three aspects: URL structured features (that is, the features reflected by URL string), web page text features
crawled by URL, and web page snapshot features crawled by URL. In order to provide convenience for subsequent
deep learning, in the preprocessing stage, we will abstract these three features into digital vectors. Output: we divide
URLs into seven categories, normal URLs into one category and malicious URLs into six categories. Finally, the
system will get a classification report for the input URL, and the specific classification is shown in Table 1.

Table. 1. Malicious URL Classification

Identifier Meaning

Positive Normal URL

Botnet Botnet

Phishing Phishing Sites

Pony Pirated Websites

Suppobox Trojan Horse Program

Suspicious With Suspicious Information
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Virus It Contains Virus

2.1. URL Structured Feature Extraction
First, convert the URL string into a numeric matrix. Figure 2 shows the conversion process from string to vector: a
character corresponds to a multidimensional vector, so a URL string is converted into a number matrix.

Figure. 2. Transformation process

In our system, symbols are divided into similar characters, lower case letters are divided into similar characters, and
upper case letters are also divided into similar characters. After visualizing the character vector, we can find that the
distance between similar characters is close. We use three, four and five convolution windows to convolute the
character vector. Firstly, a convolutional network automatically induces pattern features from a large number of
labeled URL character matrix inputs. Then every time there is a URL input, the neural network will match the input
URL by convolution [1]. If the neural network finds a capital letter followed by a control character or a number, it
will automatically compare with the pattern feature set to see whether it conforms to an existing pattern. The
convolution process is shown in Figure 3.

Figure. 3. Convolution process

2.2. Web Text Feature Extraction
By accessing the URL, you can get the content of the web page. It can then be converted to a word vector by
word2vec [2]. Word2vec is a simple and efficient open source tool provided by Google. Its function is to convert text
into word vectors, that is, to map words into continuous vector space. The workflow of word2vec can be simply
described as receiving a segmented text, calculating a multidimensional word vector for each word according to the
similarity and relevance of words in the text, and finally outputting the word vector. The output word vector contains
all kinds of digital information of words, and these word vectors form a digital matrix, which can be processed by
textCNN [3].
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The purpose of traditional natural language processing is to find the language model (the whole Huffman tree), while
the purpose of word2vec is to get the vector information of each word recorded on the leaf node. After the crawled
web pages are transformed into word vectors, text convolution neural network (textCNN) is used for training.

A text convolution neural network consists of several convolution layers, pooling layer and full connection layer [4].
Each layer of convolutional neural network is arranged in three dimensions, including height, width and number of
windows. The number of windows refers to how many different feature extraction windows we use, which can be set
freely. Three different types of windows can extract three feature maps, and five different types of windows can
extract five feature maps. As can be seen from Figure 4, after the convolution layer, the pooling layer does the
maximum sampling on the extracted feature map to get a smaller feature map. The convolution and pooling can be
repeated several times to obtain the final feature map. The last two fully connected layers give the final output.

Figure. 4. Text convolution network diagram

In the actual operation, we select three kinds of windows with width of 3, 4 and 5, and the number of each window is
set to 128, which can extract more comprehensive features and help to improve the accuracy of the final results.
Figure 5 shows the model architecture of texCNN [5]. The final output of textCNN is a probability matrix, which
indicates the probability that the new input text belongs to classification. In the ideal state, we want the final output to
conform to the one hot characteristic, that is, in this one-dimensional matrix, only one value is 1, and the other values
are 0 (for example, [0,0,0,0,1,0]). The closer the output matrix is to one hot, the higher the accuracy of the model is
[6].

Figure. 5. Model architecture of textcnn
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2.3. Image Feature Extraction
The image is characterized by the snapshot of the web page corresponding to the malicious URL, and the browser
module built in Python is used. Phantomjs processes the screenshot of web pages, and uses the function of PIL
module to cut the obtained web screenshot to the same size (1200 * 900 pixels), which is suitable for the input
requirements of the same size picture in the insectionv3 image processing [7]. Concept-v3 is a model of image
classification based on CNN introduced by GoogleNet in, which is used to train the large visual recognition challenge
data set of ImageNet in 2012. In this project, we use the concept V3 model with the lowest error rate and the
framework of TensorFlow to build our own image recognition model. Compared with the same model, concept V3
uses GoogleNet. From the number of parameters, GoogleNet parameters are 5million, AlexNet parameters are 12
times of GoogleNet, and VGGNet parameters are three times of AlexNet. Therefore, GoogleNet is a good choice
when memory or computing resources are limited [8]. The accuracy gain of GoogleNet mainly comes from the
dimension reduction, and the concept module is fully convoluted. Each weight corresponds to a multiplication
operation. After convolution decomposition, the number of parameters can be reduced for fast training, so that the
size of filter banks can be increased to improve the accuracy.

2.4. Fully Connected Neural Network
The fully connected neural network of this system is a simple BP (back propagation) neural network. BP neural
network has been very mature, and its research is also very comprehensive [9]. For each neuron, the accumulated
stimulus is the sum of the amount of stimulus transmitted by other neurons and the corresponding weight. It is used to
express thVe accumulation, the amount of stimulus transmitted by a neuron, and the weight of a neuron.

𝑋
𝑗
= ∑𝑌

𝑖
· 𝑊

𝑖

When the accumulation is completed, it spreads stimulation to some neurons around it:

𝑌𝑖 = 𝑓(𝑋𝑗)

The function here represents the activation function [10].

BP neural network is composed of many neurons. In short, the network can be divided into three layers. The input
layer transmits the stimulus to the hidden layer, and the hidden layer transmits the stimulus to the output layer
through the strength (weight) and transfer rule (activation function) of the connection between neurons. The output
layer sorts out the stimulus processed by the hidden layer to produce the final result. If there is a correct result, then
the correct result is compared with the generated result to get the error, and then the link weight in the neural network
is modified by backstepping, so as to complete the learning process [11, 12].

In the training process of BP neural network, the system takes the three probability matrix sets obtained in the
previous learning process as the abstract features of the three dimensions of URL, takes them as inputs, and uses the
fully connected neural network for centralized learning. Finally, we can get a high-precision deep learning model to
detect malicious URLs to distinguish malicious URLs.

3. Conclusion

In recent years, with the development of various deep convolutional network model generation algorithms, traffic
analysis and monitoring have become more and more important in a variety of tasks. The application of deep learning
has also achieved remarkable results, which provides ideas for network security protection. Using the HTTP traffic,
the deep neural network is used to analyze, so as to get the malicious URL, so that the machine has a certain network
protection ability. In the follow-up work, on the one hand, we will continue to improve the number and diversity of
data, improve the performance of existing detection algorithms; on the other hand, we plan to develop a malicious
URL real-time monitoring function on the basis of the above technology, to provide more technical support for
network security protection.
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