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Abstract 

Software developer productivity is a complex issue with no single, universally accepted definition or measurement. Emerging technologies like 

machine learning offer a promising opportunity for more accurate productivity measurement. Semi-structured interviews were conducted to gain 

qualitative insights into software managers’ perception of developer productivity to identify issues and inform the development of applied 

machine learning solutions. It was discovered that digital distractions significantly hinder developer productivity and conventional methods to 

monitor developer activity were often inefficient. Therefore, machine learning models were developed to monitor developer activity by 

classifying screenshots captured during activity, along with the URL and text content scraped from accessed URLs. Train and test data were 

obtained from a cooperating software house, supplemented with online sources. For screenshot classification, transfer learning using 

EfficientNetV2B0 outperformed InceptionV3, Resnet50V2, and VGG16, reaching 99.6% accuracy. This was achieved without fine-tuning, which 

resulted in the fastest training and lowest resource consumption. For content classification, SVC hyperparameter-tuned using grid search 

outperformed six other classifiers, reaching 88.5% accuracy. The design concept for a web application that utilizes the developed models to help 

managers measure developer productivity was well-received by the managers interviewed. 

Keywords: Software Developer Productivity, Semi-structured Interview, Classification, Transfer Learning, Grid Search 

1. Introduction 

Software developer productivity has become an increasingly crucial theme in software development. To remain 

competitive, software companies strive to improve developer performance and meet demands for shorter delivery times 

[1]. A clear understanding of defining, measuring, and predicting developer productivity could help organizations, 

managers, and developers develop software more efficiently [2]. Productivity is commonly defined as the size of output 

delivered over the effort spent to build it [1], [3]. However, this equation is insufficient in software development as 

productivity is dependent on multiple factors instead of a single metric [3], [4], [5]. This feedback prompts further 

studies to identify the key factors and metrics impacting developer productivity [6], [7]. 

A study by [8] found developers assess productivity by the number of completed tasks, while others consider technical 

elements such as lines of code and number of commits, and non-technical elements such as level of focus and progress 

made. Another study by [7] classified productivity metrics into code-based metrics such as the amount of code 

produced, and commit-based metrics such as repository commit activity. 

It has been discovered that these metrics are diverse and difficult to quantify or control [1], [9]. For example, when two 

developers produced equally critical source code, the person who coded more lines could be incorrectly deemed more 

productive if lines of code were the sole metric measured. Despite those complications, there is a growing interest in 

establishing better methods to measure developer productivity. Research by [3] garnered positive results from creating 

a gamified website to measure developer productivity by incorporating game mechanics to motivate users. Another 

research by [10] combined lines of code written with self-assessed measurements to gauge productivity, a method later 

adopted by Microsoft for daily developer assessments. Given these challenges, it is crucial to explore emerging 

technologies such as machine learning (ML) and artificial intelligence (AI) to measure developer productivity. ML and 
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AI can analyze complex patterns and adapt to changing environments more effectively than conventional metrics. 

Previous studies also show great potential in using ML and AI to improve developer productivity. 

One study [11] reported that GitHub Copilot users accept an average of 30% of code suggestions from the code 

completion tool, improving productivity. Another study [12] found that developers using GitHub Copilot completed 

tasks 55.8% faster. This was likely due to its ability to provide valuable suggestions that guide users toward their goals 

[13]. Despite that, using ML and AI to measure developer productivity still needs further exploration. 

This study aims to discover how developer productivity is defined and measured based on software managers' 

perceptions and explore ML options to help measure developer productivity. The qualitative insights gained can help 

identify key factors to consider when measuring developer productivity. The developed ML models can help managers 

measure developer productivity more accurately and objectively. Additionally, this study aims to fill the gap in existing 

research on developer productivity measurement and the application of ML in productivity measurement within the 

software development industry. This research contributes to both academic and professional knowledge. 

2. Method 

This study employed a multi-method approach, combining qualitative and applied research. Results from qualitative 

analysis were used to identify issues and inform the development of applied ML solutions. 

2.1 Qualitative Research 

The qualitative research section of this study used semi-structured interviews to gather data from software managers. 

This approach incorporated the participants' experiential knowledge and naturally focused on issues most important to 

them while still providing space to include new themes [14]. Twelve managers from six privately owned software 

houses in Indonesia, primarily those based in Batam, Medan, and Jakarta, were separately interviewed online from 

March 2024 to July 2024. Using questions adapted from a previous study [15], this section focused on gathering their 

perspectives to answer two key research questions: “What is the definition of software developer productivity?” and 

“How is software developer productivity measured?” Thematic analysis was performed afterward to identify patterns, 

themes, and concepts from the gathered data, as in [7]. 

2.2 Applied Research 

The applied research section of this study used the Cross Industry Standard Process for Data Mining (CRISP-DM) 

framework, the de facto industry-independent standard process for data mining [16], to maintain a structured approach. 

Since this section focused on model creation and evaluation, the process was streamlined to data collection, data 

preparation, model training and development, model evaluation, and model application. The experiments were 

conducted in Microsoft Visual Studio Code IDE equipped with the Jupyter Notebook extension, using Python version 

3.12.4 as the programming language. The hardware used was a Windows 11 machine equipped with a Ryzen 5 4600H 

processor and 16GB of DDR4-3200 RAM. 

Qualitative research has identified digital distractions as a factor that significantly hinders developer productivity. 

Conventional monitoring methods, such as requesting updates or reports and direct observations by managers are often 

inefficient. One solution utilizing ML proposed was developing models that can classify screenshots from computer 

activity and text content from accessed Uniform Resource Locators (URLs) to monitor developer activity and aid 

managers in measuring developer productivity. 

The data collection phase involved collecting data to build the datasets. From July 2024 to September 2024, screenshots 

and accessed URLs from the work computers of developers in a cooperating software house were collected using 

recording programs to serve as primary data sources for the image and text datasets. Additional secondary data sourced 

from the URL Classification Dataset [17] on Kaggle was combined to improve model accuracy. This dataset was 

chosen for its size, diversity, pre-existing labels, and public availability, aiding reproducibility and comparability. 

The data preparation phase involved preparing the dataset for model training and validation. Careful data selection is 

essential to achieve accurate results [18]. Data collected was labeled as either work-related or not based on its relevance 

to a developer's role and responsibilities. The image dataset underwent data cleaning, resizing, data augmentation, and 
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balancing by oversampling. Primarily used libraries in this process include Keras (Preprocessing Layers) and NumPy. 

Data cleaning removes corrupt images to ensure model accuracy and reliability [19]. Resizing images to a smaller 

uniform size mitigates memory limitations and high computational costs [20], enabling training on powerful resource-

intensive deep learning models [21]. Data augmentation transforms images [22] to enhance model generalization using 

random zooming, brightness, and contrast adjustments. Rotation, flipping, and perspective transformations were 

initially explored but deemed unnecessary since screenshots are consistently oriented and appear typically the same. 

Lastly, oversampling mitigates class imbalance by generating augmented images for the minority class [23]. 

The combined text dataset was first enriched with text content of up to 1000 words scraped from each collected URL. 

This approach offered a richer context than relying on URLs alone, allowing for a more accurate and effective 

classification. The contents then underwent lowercasing, stop words removal, and text normalization using stemming 

and lemmatization before being concatenated with their corresponding URL for feature extraction. Primarily used 

libraries in this process include scikit-learn, NLTK, and Pandas. Stop words removal eliminates common and 

insignificant words that do not contribute to contextual meaning [24] to optimize model focus and conserve memory 

[25]. Stemming trims prefixes and suffixes while lemmatization utilizes vocabulary and morphological analysis to 

reduce words to their root form [26]. Feature extraction using the Term Frequency-Inverse Document Frequency (TF-

IDF) method [27] quantifies the importance of each word by assigning higher importance to words that appear 

frequently in a specific document but less frequently in the overall corpus. This simple and effective technique is widely 

used in text classification [28] for information retrieval and data mining [29]. 

The modeling phase involved building suitable models. Four deep learning Convolutional Neural Network (CNN) 

architectures: EfficientNetV2BO [30], InceptionV3 [31], Resnet50V2 [32], and VGG16 [33] were trained and 

evaluated to find the best-performing image classification model. Different models excel in varying aspects of a task, 

feature extraction, or data patterns, making exploring a range of models crucial. These four models were chosen due to 

their distinct architectural designs and proven effectiveness in various contemporary image classification tasks, as 

demonstrated by multiple research [34], [35], [36], [37]. 

Using the Keras library with Tensorflow backend, the models were pre-trained on ImageNet data to leverage transfer 

learning, improving accuracy and training efficiency [38]. Each model started with a (224, 224, 3) input layer. Table 1 

shows the additional layers added to each model and their respective purposes. The underlying base architectures are 

not modified. A dropout layer with a common practice rate of 0.2 was added to provide a balance between regularization 

strength and preventing overfitting, as in [39]. Dropout layer mitigates overfitting by randomly deactivating neurons 

during training and fostering the learning of robust features. An 80/20 train-test data split was employed to ensure 

sufficient training data while providing a statistically significant validation set, which is another common practice for 

datasets of this size as in [40]. The split was also stratified to ensure that the class proportions were maintained across 

both sets and mitigate potential bias from class imbalances to ensure reliable evaluation. 

Table 1. Overview of Additional Layers Added on Top of Each Pre-trained Model 

Layer Type Configuration Purpose 

Global Average Pooling GlobalAveragePooling2D() Condense spatial information 

Batch Normalization BatchNormalization() Normalize activations 

Dense Dense(128, activation='relu') Improve feature extraction 

Dropout Dropout(0.2) Prevent overfitting 

Output Dense(1, activation="sigmoid") Binary classification prediction 

Each model was initially trained for up to 100 epochs with the Adam optimizer, a learning rate of 0.01, and a binary 

cross-entropy loss function. EarlyStopping and ReduceLROnPlateau callback functions are used, as in [41] did. 

EarlyStopping stops training after 10 epochs without validation loss reduction to prevent overfitting and avoid 

unnecessary computation. With restore_best_weights enabled, EarlyStopping also automatically restores the weights 

from the epoch that yielded the lowest validation loss. On the other hand, ReduceLROnPlateau reduces the learning 

rate by a factor of 0.2 after 5 epochs without validation loss reduction to allow for finer optimization. 
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The models were then fine-tuned after their initial training to further improve performance. The top 20 layers of each 

model except the Batch Normalization layers were unfrozen. This allowed the models to learn unique features of the 

dataset while preserving the stable representations it had learned. Each model was retrained on the same data and with 

parameters identical to earlier training for up to another 100 epochs, except with a reduced learning rate of 1e-5 to 

allow for more gradual weight adjustments. Previous callback functions were also reused. 

To determine the optimal text classification model, hyperparameter tuning using grid search was employed. Table 2 

shows the classifiers and hyperparameters tested during the grid search. 

Table 2. Overview of Hyperparameters Tested During Grid Search 

Classifier Hyperparameter Description Tested Values 

Logistic Regression 

Regularization Strength (C) 
Controls the trade-off between smooth 

decision boundary and training accuracy 
[0.1, 1, 10] 

Optimization Solver (solver) Algorithm used to optimize the model 
['liblinear', 'newton-cg', 

'lbfgs', 'sag', 'saga'] 

Maximum Iterations 

(max_iter) 
Number of iterations for optimization [100, 200, 300] 

Random Forest 

Classifier 

Number of Trees 

(n_estimators) 
Number of trees in the forest [50, 100, 200] 

Maximum Depth 

(max_depth) 
Maximum depth of the trees [10, 20, 30] 

Minimum Samples for Split 

(min_samples_split) 

Minimum number of samples required 

to split an internal node 
[2, 5, 10] 

Criterion (criterion) 
Function to measure the quality of a 

split 
['gini', 'entropy'] 

Maximum Features 

(max_features) 

Number of features to consider when 

looking for the best split 
['sqrt', 'log2'] 

Minimum Samples per Leaf 

(min_samples_leaf) 

Minimum number of samples required 

to be at a leaf node 
[1, 2, 4] 

Gradient Boosting 

Classifier 

Number of Boosting Stages 

(n_estimators) 
Number of boosting stages to be run [50, 100, 200] 

Learning Rate (learning_rate) 
Step size shrinkage used in update to 

prevent overfitting 
[0.01, 0.1, 1] 

Subsample (subsample) 
Fraction of samples used for fitting the 

individual base learners 
[0.8, 1.0] 

Maximum Features 

(max_features) 

Number of features to consider for the 

best split 
['sqrt', 'log2'] 

Minimum Samples for Split 

(min_samples_split) 

Minimum number of samples required 

to split an internal node 
[2, 5] 

Support Vector 

Classifier 

Regularization Strength (C) 

Controls the trade-off between achieving 

a low training error and a low testing 

error 

[0.1, 1, 10, 100] 

Kernel Type (kernel) 
Specifies the kernel type to be used in 

the algorithm 
['linear', 'rbf'] 

Gamma (gamma) 
Kernel coefficient for ‘rbf’, ‘poly’, and 

‘sigmoid’ 
['scale', 'auto'] 

Degree (degree) 
Degree of the polynomial kernel 

function 
[2, 3, 4] 

K-Neighbors 

Classifier 

Number of Neighbors 

(n_neighbors) 

Number of neighbors to use for 

classification 
[3, 5, 7] 

Weights (weights) Weight function used in prediction ['uniform', 'distance'] 

Distance Metric (metric) 
Metric used to compute distance 

between neighbors 

['euclidean', 'manhattan', 

'minkowski'] 
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Algorithm (algorithm) 
Algorithm used to compute the nearest 

neighbors 

['auto', 'ball_tree', 

'kd_tree', 'brute'] 

Stochastic Gradient 

Descent Classifier 

Loss Function (loss) The loss function to be used 
['hinge', 'log_loss', 

'modified_huber'] 

Penalty (penalty) 
The penalty (regularization term) to be 

used 
['l1', 'l2', 'elasticnet'] 

Learning Rate (alpha) 
Constant that controls the step size in 

the optimization 
[0.0001, 0.001, 0.01] 

Maximum Iterations 

(max_iter) 

Maximum number of iterations for the 

optimization 
[1000, 2000, 3000] 

Learning Rate Schedule 

(learning_rate) 
The learning rate schedule to be used 

['constant', 'optimal', 

'invscaling', 'adaptive'] 

Initial Learning Rate (eta0) The initial learning rate [0.1, 0.5] 

Shuffle (shuffle) 
Whether to shuffle the training data 

before each epoch 
[True, False] 

Multinomial Naive 

Bayes 

Smoothing Parameter (alpha) Additive Laplace smoothing parameter [0.1, 0.5, 1.0] 

Fit Prior (fit_prior) Whether to learn class prior probabilities [True, False] 

Class Prior (class_prior) Prior probabilities of the classes [None, [0.5, 0.5]] 

Classical machine learning algorithms were chosen to classify URLs and text content as work-related or not due to 

their sufficient performance in binary classification. While deep learning models are more powerful, their increased 

computational cost and resource requirements were unnecessary for this task. Furthermore, the dataset size, though 

substantial, did not necessitate the complex architectures of deep learning, which typically excel in scenarios 

demanding nuanced feature extraction, such as sentiment analysis or language detection. 

A diverse set of classifiers and hyperparameters was evaluated to ensure thorough exploration and identify the most 

effective model configuration. For numerical hyperparameters, discrete sets of promising values spanning orders of 

magnitude based on common practices were selected with scales (e.g., linear, logarithmic) chosen according to 

established conventions for each parameter. For categorical hyperparameters, all available options were selected, given 

the limited number of choices, as in [42]. 

A parameter grid was defined, encompassing the classifiers and hyperparameters to be tested. Subsequently, a pipeline 

comprising a TF-IDF vectorizer and a placeholder classifier was constructed. Following an 80/20 stratified train-test 

split, an exhaustive 5-fold cross-validation grid search was conducted on the defined parameter grid using 

GridSearchCV from scikit-learn. The model underwent five training iterations for each classifier-hyperparameter 

combination, with each fold serving as the validation set in turns. The average performance across the five folds 

provided a reliable estimate for each combination. Ultimately, the combination yielding the highest average 

performance score was selected. 

The model evaluation phase involved assessing model performances. The models were evaluated against the remaining 

test data from earlier train-test data splits using metrics derived from the confusion matrix, such as accuracy, precision, 

recall, and F1-score, as in [43]. Accuracy measures how often the model correctly classifies items as either work-

related or not. Precision gauges how many of the items classified as work-related truly were work-related. Recall 

quantifies the model's ability to find all the actual work-related cases. The F1-score combines precision and recall for 

work-related classification into a single metric, giving equal weight to both. Lastly, the model application phase 

involved designing an application that utilizes the developed models using Figma. 

3. Results and Discussion 

3.1. Qualitative Research 

The qualitative research section is divided into descriptive analysis, defining software developer productivity, 

measuring software developer productivity, and summary. 
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3.1.1. Descriptive Analysis 

Table 3 shows that the software houses interviewed used various programming languages for web, mobile, and 

industrial applications with varying workforce sizes. Despite that, many had similar development processes, and most 

offered Software as a Service (SaaS) solutions, primarily in Enterprise Resource Planning (ERP). 

Table 3. Characteristics of Software Houses Interviewed 

Organization No. of Employees Domain Programming Languages Development Process 

A 55 ERP Go, PHP, Python Agile (Scrum) 

B 95 ERP C#, Java, JavaScript, Kotlin, Agile (Scrum) 

C 12 
Industrial 

Automation 
G-code, C#, Verilog 

Agile (Extreme 

Programming) 

D 285 ERP Flutter, JavaScript Agile (Scrum) 

E 5 Delivery Platforms C#, PHP, Python Agile (Scrum) 

F 20 ERP JavaScript, PHP Agile (Scrum) 

Table 4 shows that most software managers interviewed had five or more years of experience at their current 

organization, except for p11, who had three years, and p12, who had less than a year. Most managers have an 

educational background in Computer Science, while some hold degrees in Electrical Engineering (p2, p3, p9). 

Table 4. Characteristics of Software Managers Interviewed 

ID Organization Position Education Tenure 

p1 A Software Engineering Team Leader Bachelor 9 

p2 A Lead Mobile Developer Bachelor 5 

p3 A Design (UI/UX) Team Leader Diploma II 6 

p4 B Product Manager Bachelor 5 

p5 B Developer Analyst Bachelor 6 

p6 B Program Manager Bachelor 7 

p7 B Program Manager Bachelor 7 

p8 C IT Lead Bachelor 6 

p9 D QandA Lead Bachelor 5 

p10 D Head of Tech Bachelor 8 

p11 E Programming Team Leader Bachelor 3 

p12 F Programming Team Leader Diploma III <1 

 

3.1.2. Defining Software Developer Productivity 

All managers except p1 defined developer productivity as completing assigned tasks on time without compromising 

quality. While p2 preferred early submission to avoid overtime, most agreed on timely delivery. No specifics on daily 

task quantity were mentioned, but p9 did suggest the importance of fair workload distribution. 

...ensuring all tasks are finished before the deadline. (p2) 

...ability to produce quality and efficient code within a certain timeframe. (p3) 

...ability to complete tasks quickly without sacrificing quality. (p4) 

...ability to produce high-quality code efficiently. (p5) 

...able to finish work quickly but still maintain quality. (p6) 

Managers also valued adaptability and improvement as productivity. Early task completion, as p2 believed, would 

provide more time to improve these skills through exploration and learning. Besides meeting deadlines, p3 also 

expected developers to adapt to changing requirements or technology and contribute to improving the software 

development process. 
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...when they don't have tasks, they immediately inquire about what [still] needs to be done. (p2) 

...capability to collaborate within a team, adapt to changing needs or technologies, and contribute to the overall 

improvement of software development processes. (p3) 

Collaboration skills were another essential component in productive developers. Team coordination is needed to 

balance workload and meet organizational targets. Developers in Organization E collaborate to re-allocate tasks when 

deadlines approach to prevent burnout and ensure timely completion. 

...ability to work effectively within a team. (p4) 

...able to work well in a team. (p6) 

...work effectively in a team. (p7) 

...when our project is near its deadline, we...assess the remaining tasks.... Most of the cases this problem would be come 

from the time constraint...the solution was to allocate some of the tasks to other members.... (p11) 

The last crucial factors were understanding and achieving stakeholder goals. Organization D used story points to help 

quantify productivity and aid in planning, prioritization, and goal alignment. 

...[the code] quality, sustainability, and the impact of the solutions produced on [set] business goals. (p3) 

...knowing the requirements for projects and the constraints such as time, resource[s], and scopes. (p11) 

3.1.3. Measuring Software Developer Productivity 

Most managers regarded effective and timely delivered output as the key indicator of a productive developer. 

Developers must understand resources, time, and scope management to be considered productive. For example, 

Organization E held daily meetings to track progress and resolve roadblocks to maintain developer productivity. 

...write code that is efficient, easy to maintain, and can anticipate potential bugs...effective time management such as 

prioritizing tasks and maintaining focus is crucial. If these aspects are fulfilled, the assigned tasks are more likely to be 

completed according to the deadline. (p1)  

Based on their output, code quality, time taken to complete tasks... (p5) 

...how fast we can deliver requirements for [our] projects. (p11) 

Several managers used technical metrics and software tools to track deliverable output. For example, Organization A 

tracked real-time activity, Organization B used Git for code contribution tracking, and Organization C identified 

productivity based on story points. 

...the company uses monitoring tools that can track the real-time activities of its employees...[to] obtain information such 

as the total effective working hours of employees, allowing management to assess their efficiency. (p1) 

...use project management and software development tools...such as using Git to track code contributions... (p6) 

Beyond deliverable output, behavior and team dynamics were valid indicators. Regular evaluations and client feedback 

were also considered when assessing developer productivity. For example, Organization E conducted monthly peer 

feedback meetings to gauge developers' impact on team dynamics beyond deliverables. 

...only in a collaborative work atmosphere, software developers thrive, innovate, and produce exceptional solutions. (p3) 

Based on...their contributions to the project and team. (p5) 

By conducting an anonymous internal survey that requires each developer on a team to provide an assessment of their 

colleagues' performance. (p8) 

...how active a developer is in providing support to the other members. (p11) 

3.1.4. Section Summary 

The interviews revealed various approaches to measuring software developer productivity between organizations. 

While several metrics were suggested, the most common consensus was that developer productivity is defined as 

completing tasks before the deadline without sacrificing quality. This highlighted the high standards expected from 

developers. 
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For developers to achieve optimal productivity, p11 emphasized understanding project constraints like time, resources, 

and scope. Although this was crucial, the interviews revealed another recurring theme: the importance for developers 

to maintain focus and avoid distractions. This was emphasized by p1 and p3, with p9 further highlighting the necessity 

of identifying distractions that hinder productivity to stay on track. 

These distractions are common in environments with frequent digital. interactions [44], [45] Developers, who often 

rely on online resources like Stack Overflow for troubleshooting and insights [46], [47], are particularly susceptible to 

these distractions [48]. One research [49] suggests that self-initiated interruptions, such as voluntarily switching tasks 

within the screen, particularly to engage with non-work activities, can be more disruptive than external interruptions 

and negatively impact productivity. 

To ensure developers stay on track, software houses often monitor developer activity by requesting updates and reports. 

For example, Organization B reviewed the daily task progress of each developer, including completed, ongoing, and 

upcoming tasks. However, these processes were often tedious, time-consuming, and prone to subjective bias or human 

error. Managers also perform observations from time to time, but they cannot be expected to constantly monitor every 

developer’s activity as they have their own tasks to complete. Developers should also have some level of flexibility 

and autonomy. Hence, there is an opportunity to utilize ML for monitoring developer activity. 

One study [50] developed an AI to measure the learning productivity of students by analyzing visual data from 

annotated screenshots and categorizing them into various categories to block elements recognized as distractions. There 

was also extensive research on content classification, especially of user-generated tweets, utilizing various ML 

methods, as reviewed by [51]. A similar approach can be considered to monitor developer activity and thus help 

measure developer productivity by classifying screenshots and content of accessed URLs. 

A follow-up inquiry was conducted with the managers interviewed to get their feedback on the qualitative research 

results of this study, as in [15]. All managers agreed with the analysis of the insights gathered and the summary 

provided. There were no dissenting opinions. 

3.2. Applied Research 

The applied research section is divided into data collection and preparation, model training and evaluation, and model 

application. 

3.2.1. Data Collection and Preparation 

A total of 2,210 screenshots and 849 accessed URLs were collected as primary image and text data. The text dataset 

was supplemented with 3,309 random URLs from the “URL Classification Dataset” as secondary text data. All data 

collected were labeled as either work-related or not-work-related. An additional column was created to store text 

content scraped from its associated URL. Figure 1 and figure 2 show a random sample of collected screenshots and 

collected URLs with scraped text content, respectively. 

 

 

Figure 1. Sample of Collected Screenshots 
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Figure 2. Sample of Collected URLs with Scraped Text Content 

After data cleaning, 2,190 image data and 3,563 text data remained. The images were resized to a shape of (224x224x3) 

and augmented. To balance the dataset, the not-work-related class was oversampled with augmented images to 

approximately match the quantity of the work-related class. The contents from the text dataset underwent lowercasing, 

stop words removal, and stemming and lemmatization before being concatenated with their corresponding URL for 

TF-IDF feature extraction. Figure 3 and figure 4 show a random sample of preprocessed images and texts, respectively. 

Figure 5 and figure 6 show the screenshots and contents data distribution after preprocessing, respectively. 

 

Figure 3. Sample of Preprocessed Image Data 

 

Figure 4. Sample of Preprocessed Text Data 

 

Figure 5. Distribution of Preprocessed Image Data 

 

Figure 6. Distribution of Preprocessed Text Data 
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3.2.2. Model Training and Evaluation 

Table 5 compares the performance metrics of various pre-trained models after initial training on the dataset for the 

image classification task. EfficientNetV2B0 outperformed the others, achieving perfect scores for precision, recall, and 

F1-score, with an accuracy of 0.9962. VGG16 also performed well, reaching 0.97 for precision, recall, and F1-score, 

with an accuracy of 0.9671 but it took significant time to train (almost 35 minutes longer). InceptionV3 and 

ResNet50V2 also performed well, achieving precision, recall, and F1 scores between 0.91 and 0.93. Their accuracies, 

however, were slightly lower than EfficientNetV2B0 and VGG16 at 0.9139 and 0.9291 respectively. 

Table 5. Overview of Pre-trained Model Performances After Training 

Pre-trained model Final epoch Train time (s) Precision Recall F1-score Accuracy 

EfficientNetV2B0 31 1991.0 1.00 1.00 1.00 0.9962 

InceptionV3 10 1369.5 0.91 0.91 0.91 0.9139 

ResNet50V2 4 1554.9 0.93 0.93 0.93 0.9291 

VGG16 8 4073.6 0.97 0.97 0.97 0.9671 

Table 6 compares the performance metrics of the same models after fine-tuning. EfficientNetV2B0 seemed to have 

already converged, as indicated by EarlyStopping which reverted its weights to the third epoch to prevent overfitting. 

The rest of the models showed improvement in all metrics, with VGG16 achieving the most significant improvement, 

reaching 0.99 for precision, recall, and F1-score, with an accuracy of 0.9911. However, VGG16 took significantly 

longer to fine-tune (more than five hours). InceptionV3 and ResNet50V2 also performed well, with precision, recall, 

and F1-scores ranging between 0.93 and 0.96 and accuracy of 0.9266 and 0.9557 respectively. 

Table 6. Overview of Pre-trained Model Performances After Fine-Tuning 

Pre-trained model Final epoch Train time (s) Precision Recall F1-score Accuracy 

EfficientNetV2B0 3 635.8 0.99 0.99 0.99 0.9949 

InceptionV3 33 2943.8 0.93 0.93 0.93 0.9266 

ResNet50V2 18 3425.3 0.96 0.96 0.96 0.9557 

VGG16 14 19359.0 0.99 0.99 0.99 0.9911 

Figure 7 to figure 14 show the confusion matrices and learning curves of the evaluated models after training and fine-

tuning. It is important to note that the final model weights were not taken from the absolute last epoch on the graphs, 

since EarlyStopping reverts the models’ weights to 10 epochs prior, where validation loss was minimal. 

During training, all the models demonstrated an initial period of rapid improvement in accuracy and reduction in loss 

for both training and validation sets over the first few epochs. Subsequently, the learning curves gradually leveled off 

as the models converged towards optimal performance. After fine-tuning, all models, except for EfficientNetV2B0 

(already optimized), demonstrated improved accuracy, reduced loss, and fewer misclassifications. 

Based on the confusion matrices in figure 7 and learning curves in figure 8, EfficientNetV2B0 demonstrated excellent 

performance after initial training. The model achieved near-perfect accuracy and minimal misclassifications, indicating 

optimal convergence. Fine-tuning was conducted for consistency, but it did not significantly improve performance and 

instead led to a slight increase in misclassifications. The learning curves during fine-tuning also displayed patterns of 

fluctuations that indicate overfitting. With EarlyStopping triggered after only 13 epochs, further fine-tuning was 

deemed not beneficial. Overall, the initial training phase appeared to have already optimized the model. 
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Figure 7. EfficientNetV2B0 Confusion Matrices after (left) Training and (right) Fine-Tuning 

 

 

 

Figure 8. EfficientNetV2B0 Learning Curves after (left) Training and (right) Fine-Tuning 

Based on the confusion matrices in figure 9 and learning curves in figure 10, InceptionV3 demonstrated good 

performance after initial training and improved further after fine-tuning. The initial model achieved high accuracy but 

still misclassified some images. Fine-tuning significantly reduced misclassifications, especially on work-related 

images, which led to a more robust and accurate model. The learning curves during fine-tuning also showed a stable 

and consistent improvement in accuracy and reduction in loss, which suggested that there were benefits from additional 

training. Overall, both the initial training and fine-tuning phases contributed to the strong performance of the model. 
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Figure 9. InceptionV3 Confusion Matrices after (left) Training and (right) Fine-Tuning 

 

 

 

Figure 10. InceptionV3 Learning Curves after (left) Training and (right) Fine-Tuning 

Based on the confusion matrices in figure 11 and learning curves in figure 12, ResNet50V2 demonstrated good 

performance after initial training and improved further after fine-tuning. Like the previous InceptionV3, the initial 

model achieved high accuracy but still misclassified some images. Fine-tuning in this case also significantly reduced 

misclassifications on work-related images, which led to a more robust and accurate model. The learning curves during 

fine-tuning also showed a consistent improvement in accuracy and reduction in loss, which suggested that there were 

benefits from additional training. Overall, both the initial training and fine-tuning phases once again contributed to the 

strong performance of the model. 
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Figure 11. ResNet50V2 Confusion Matrices after (left) Training and (right) Fine-Tuning 

 

 

 

Figure 12. ResNet50V2 Learning Curves after (left) Training and (right) Fine-Tuning 

Based on the confusion matrices in figure 13 and learning curves in figure 14, VGG16 demonstrated great performance 

after initial training and improved further after fine-tuning. The initial model achieved high accuracy but still 

misclassified some images. Like InceptionV3 and ResNet50V2, fine-tuning significantly reduced misclassifications, 

especially on work-related images, which allowed it to reach an accuracy close to that of EfficientNetV2B0. The 

learning curves during fine-tuning also showed improvement in accuracy and reduction in loss, before gradually 

leveling off, which suggested that up to a certain point, there were benefits from additional training. Overall, both the 

initial training and fine-tuning phases contributed to the model's strong performance. 
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Figure 13. VGG16 Confusion Matrices after (left) Training and (right) Fine-Tuning 

 

 

 

Figure 14. VGG16 Learning Curves after (left) Training and (right) Fine-Tuning 

Overall, EfficientNetV2B0 was the most effective in classifying screenshots among the evaluated models. In terms of 

training speed, this model trained the fastest and converged in the fewest epochs, consequently requiring the least 

computational resources. VGG16 achieved a similar performance with further fine-tuning that required much higher 

computational costs. While InceptionV3 and ResNet50V2 performed well, they couldn't match EfficientNetV2B0's 

superior training speed and resource efficiency. 

For text (URL and content) classification, GridSearchCV selected a Support Vector Classifier (SVC) with 

hyperparameters C=1, degree=2, gamma='scale', and kernel='rbf' as the best-performing model. The regularization 

parameter ‘C=1’ balances between maximizing margins and minimizing misclassifications, suggesting a preference 

for a wider margin even at the cost of some errors. The ‘rbf’ kernel has non-linear decision boundaries making it 

suitable for complex datasets. Gamma set to ‘scale’ automatically calculates based on the data, controlling the influence 

of individual data points. While ‘degree=2’ is specified, it is irrelevant since the chosen kernel is not polynomial. This 
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model achieved a best score of 0.9088. Table 7 shows the model classification report, where it was evaluated to have 

an accuracy of 0.8850, weighted and macro average precision of 0.89, recall of 0.88, and F1-score of 0.88. 

Table 7. SVC Model Classification Report 

Class Precision Recall F1-score Support 

Not Work Related 0.87 0.92 0.89 374 

Work Related 0.91 0.84 0.87 339 

Accuracy   0.88 713 

Macro Average 0.89 0.88 0.88 713 

Weighted Average 0.89 0.88 0.88 713 

Figure 15 and figure 16 show the confusion matrix and learning curve of the SVC model, respectively. The confusion 

matrix showed that 378 out of 405 not-work-related instances and 370 out of 423 work-related instances were correctly 

classified during evaluation. Despite the good performance, the learning curve hinted the model had slight overfitting. 

However, the rising test score and plateauing training score trend towards the end of the graph suggest that with more 

training data, generalization could improve, and the scores would have eventually converged. 

 

Figure 15. SVC Model Confusion Matrix 

 

Figure 16. SVC Model Learning Curve 

Overall, this research developed two effective models for classifying screenshots and URL content. Image classification 

would rely on EfficientNetV2B0, which achieved perfect precision, recall, and F1-score scores. Text classification 

would rely on a hyperparameter-tuned SVC which reached a macro average of 0.89 on the same metrics mentioned 

earlier. While the text model performed well, there is room for improvement by increasing its training data. 

Techniques like EarlyStopping, ReduceLRonPlateau, and GridSearchCV optimized the training process. 

EarlyStopping prevented overfitting in the image model while ReduceLRonPlateau ensured efficient convergence. 

GridSearchCV, on the other hand, efficiently found the best text classifier model and its hyperparameters, saving time 

and effort. These techniques contributed to the development of robust and effective models. Figure 17 and figure 18 

show predictions made by the model on a sample of unseen data where it accurately classified all. 

 

Figure 17. Predictions on a Sample of Unseen Screenshots 
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Figure 18. Predictions on a Sample of Unseen Text Content 

3.2.3. Model Application 

By using the developed models to periodically classify screenshots and content of accessed URLs into work-related or 

not, the effective working time of a software developer can be estimated. Integrating them into a web application can 

provide software managers with data to help them more accurately and objectively measure developer productivity, by 

considering both effective working time and the total number of task story points completed. 

Figure 19 to figure 20 show the design concepts for the employee’s dashboard and task detail page of the proposed 

web application, visualized using Figma. Developers initially access the system by logging into their dashboards (figure 

19). These dashboards display ongoing and completed tasks, along with the total work duration. To begin activity 

tracking, developers click on the start button, enabling the system to capture periodic screenshots and URLs accessed. 

Consequently, the developed model processes these records, classifying them as either work-related or not. For 

scheduled breaks, developers can engage the pause button. Break intervals are pre-configured to 15 minutes, after 

which a pop-up notification prompts the developer to resume work. When a developer self-assigns an eligible task, it 

is designated as an ongoing task. Upon task completion, developers can update the task status to complete (figure 20), 

thereby updating the activity log. 

  

Figure 19. Design Concept for Employee’s Dashboard 

Page of the Proposed Web Application 

Figure 20. Design Concept for Employee’s Task 

Completion Page of the Proposed Web Application 

Figure 21 to figure 22 show the design concepts for the manager’s dashboard and employee productivity data page of 

the proposed web application, visualized using Figma. Managers have a dedicated dashboard displaying overall task 

progress, work durations tracked, and the total number of currently online employees (figure 21). The dashboard also 

summarizes the number of ongoing tasks, completed tasks, effective work duration, and total duration for any employee 

productivity results queried. Managers can also delve into individual developer productivity data, filtering by date to 

review anonymized classifications of screenshots and URLs (as part of ensuring privacy), provide device names and 

timestamps of each recorded entry (figure 22). Developer productivity can then be estimated by calculating the 

proportion of work-related entries out of all recorded entries. Managers can also generate productivity reports, given a 

date range and an employee name. To uphold accountability and address potential lapses in work resumption, managers 

are notified if a developer remains offline following the automated break interval reminder. Managers can then send a 

secondary reminder notification. 
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Figure 21. Design Concept for Manager’s Dashboard 

Page of the Proposed Web Application 

Figure 22. Design Concept for Manager’s Employee 

Productivity Data Page of the Proposed Web 

Application 

This proposed web application can benefit both developers and managers. Developers can use the insights provided 

for goal setting, progress tracking, and time management. Meanwhile, managers can leverage data and trends collected 

to improve project management, foster team collaboration, and make informed decisions. 

A follow-up inquiry was conducted with the software managers interviewed from the qualitative research to get their 

feedback on the applied research results of this study. All managers agreed that the proposed web application would 

be useful in measuring developer productivity. Some managers made additional suggestions: p8 proposed the ability 

to filter individual employee data, while p3, p9, and p10 proposed integrating a collaborative space for discussing 

upcoming and ongoing tasks. 

4. Conclusion 

This study investigated software developer productivity using a multi-method approach with two goals. First, it 

examined how software managers define and measure developer productivity. Second, it explored potential machine 

learning techniques to help measure developer productivity. 

Through qualitative research, this study found that most managers interviewed primarily defined developer productivity 

as completing assigned tasks on time without compromising quality, with considerations into adaptability, 

improvement, collaboration skills, and understanding stakeholder goals. This study also found that most managers 

often measured developer productivity using indicators like deliverable output efficiency that was tracked using 

technical metrics and software tools, while also taking into consideration behavior and team dynamics. Another 

recurring theme found was that distractions significantly impact developer productivity, and that conventional methods 

were inefficient. 

Through applied research, a pair of ML models were developed to accurately classify screenshots and contents of 

accessed URLs as either work-related or not. After comparing four pre-trained models with transfer learning, 

EfficientNetV2B0 was the best for classifying screenshots, reaching a near-perfect 0.9962 accuracy without requiring 

fine-tuning. For URL content, a hyperparameter-tuned SVC outperformed six other classifiers, reaching a substantial 

0.8850 accuracy. These models can be used to monitor developer activity, and when integrated with other data into a 

web application as proposed earlier, can provide managers with a more accurate and objective measurement of 

developer productivity. 

Overall, this study offers a comprehensive understanding of developer productivity by examining qualitative 

perspectives and exploring applied ML solutions. Future research should leverage technology and data analytics to 

explore hybrid models and diverse datasets for enhanced metric development. Quantification of critical yet less tangible 

factors such as collaboration skills, team dynamics, workplace culture, and developer well-being should also be 

investigated alongside traditional output metrics. Furthermore, research should evaluate advanced techniques for text 

classification like deep learning and transformer models or optimization of model performance through rigorous multi-

step hyperparameter tuning for improved classification. Finally, ethical considerations regarding privacy and bias in 
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data analysis, and the long-term impact of monitoring tools on developer well-being, must be critically examined to 

ensure responsible advancements. 

The findings of this study reveal the complex relationship between subjective and objective factors affecting developer 

productivity. While machine learning offers valuable tools for measuring productivity, it is important to recognize the 

limitations imposed by data-driven approaches. Organizations can create a work environment where developers can 

thrive and contribute their best to software development projects by fostering a culture of open communication, team 

collaboration, and supporting employee well-being. 
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