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Abstract 

The recent progress of operational network intrusion detection systems (NIDS) has become increasingly essential. Herein, a fruitful attempt to 

introduce an innovative NIDS methodology that integrates the grid search optimization algorithm and ANOVA techniques with the K nearest 

neighbor (KNN) algorithm to analyze both spatial and temporal characteristics of data for network traffic. We employ the UNSW-NB15 

benchmark dataset, which presents various patterns and a notable imbalance between the training and testing data, with 257674 samples. 

Therefore, the Synthetic Minority Oversampling Technique has been used since this method is effective in handling imbalanced datasets. Further, 

to handle the overfitting issue the K folds cross-validation method has been applied. The feature sets within the dataset are meticulously selected 

using ANOVA mechanisms. Subsequently, the KNN classifier is fine-tuned through hyperparameter tuning using the grid search algorithm. This 

tuning process includes adjusting the number of K neighbors and evaluating various distance metrics such as 'euclidean', 'manhattan', and 

'minkowski'. Herein, all attack types in the dataset were labeled as either 1 for abnormal instances or 0 for normal instances. Our model excels in 

binary classification by harnessing the strengths of these integrated techniques. By conducting extensive experiments and benchmarking against 

cutting-edge machine learning and deep learning models, the effectiveness and advantages of our proposed approach are thoroughly 

demonstrated. Achieving an impressive performance of 99.1%. Also, several performance metrics have been applied to assess the proposed 

model's efficiency. 

Keywords: UNSW-NB15, Classification, ANOVA, Grid Search, KNN 

1. Introduction  

The extensive implementation of internet technologies, especially with the incorporation of cloud facilities, has resulted 

in an important rise in intrusion occasions. Prominent platforms such as Google and Amazon, which contain countless 

servers and offer services to numerous organizations, have become prime objects for malicious actions. As a result, 

societies are incurring increasing charges to implement security measures like firewalls to safeguard their data and 

maintain continuous service. Failure to identify and respond to intrusions can lead to severe repercussions for an 

organization's character and the reliability of its data [1]. 

Network Intrusion Detection Systems (NIDS) are vital for defending networks against malicious actions [2]. This type 

of routine, which must be implemented in either hardware or software, is built to monitor and notice illegal or malicious 

network traffic. NIDS works by passively observing network traffic, examining it for unusual patterns, and matching 

these patterns with a database of recognized attack signatures [3].  

Thorough traffic surveillance is guaranteed by strategically positioning NIDS at crucial locations within a network, 

such as on network channels or particular hardware. NIDS thoroughly examines all network traffic inside a subnet and 

matches it to a pre-established database of attack signs. When anomalous activities or an attack is detected, NIDS 

generates alerts to notify network administrators, prompting them to examine and take suitable movements [4]. The 
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effectiveness of NIDS lies in their capability to catch and reply to suspicious patterns crossways various hosts, 

facilitating the early recognition and avoidance of attacks earlier they can influence their goals. As a result, NIDS 

serves as a vital security measure, constantly monitoring network packets and quickly warning administrators of 

possible threats. 

Conversely, it is important to recognize the challenges and constraints encountered by NIDS [5]. These comprise the 

essential for incessant information to attack signature databases to keep ahead of emerging threats, the impending 

untrue positives or untrue negatives when detecting intrusions, and the measurement issues NIDS faces when managing 

large volumes of network traffic. Overcoming these obstacles calls for the creation of advanced detection methods that 

integrate machine learning (ML) and deep learning (DL) algorithms to improve the precision and performance of IDS 

[6]. 

The arrangement of this study is prepared as follows: Section 1 delivers an introduction to the study, forming its context 

and objectives. Section 2 compromises a comprehensive review of the related literature, stress-standing studies, and 

their relevance. Section 3 presents a complete explanation of the primary work undertaken. Section 4 conveys an in-

depth explanation of the dataset employed in the study. Section 5 expands on the data preprocessing methods employed 

to arrange the data for examination. Section 6 conducts a thorough investigation of the outcomes and occupies a serious 

argument of their implications. Finally, Section 7 accomplishes the research by summarizing the conclusions and 

deliberating their broader significance. 

2. Literature Review  

NIDS are dynamic for protective networks against malicious actions and must be set up in organization networks as 

represented in figure 1. Therefore, various methods have been implemented (NIDS) to categorize network data packets 

as either normal or abnormal. For example, ML-based NIDS uses specific frameworks like kernel machines and 

ensemble methods for classification [7], [8]. A frequently used classification technique is the support vector machine 

(SVM), which leverages kernel machines and the Gaussian kernel [9]. The kernel function enables the SVM to handle 

nonlinear datasets by representing the data in a further-dimensional space, thus making it linearly separable. 

Additionally, ensemble classifiers combine various non-powerful classifiers into a single strong model to mitigate 

overfitting during training. Techniques like random forest [10], [11] and adaptive boosting [12], [13] exemplify this 

robust classification approach. Machine learning techniques emphasize understanding the importance of several 

features. Methods for feature obtainability also utilize dimensionality reduction procedures to recognize the most ideal 

relationships amongst dataset features. Additionally, these techniques aim to predict the finest outcomes with the 

optimum time steps. 

 

Figure 1. NIDS Topology 

Recently, hierarchical models have been utilized to detect mutually spatial and temporal patterns in network traffic 

data. For example, predictive models designed for network time series data have gained significant popularity. This 

kind of dataset exhibits nonlinear characteristics due to the fluctuating nature of several data points over time, causing 

irregular fluctuations. ML algorithms such as naïve Bayes and support vector machines have been applied to develop 

NIDS [14]. However, these arithmetical methods do not account for mutual relationships among data points. Despite 

their potential, these models are still under research for practical applications due to their high false positive rates [15]. 

Specifically, the model must be trained on a dataset with features that characterize typical network behavior. Generally, 

labels are assigned as 0 for normal behavior and 1 for attacks. Although certain datasets categorize attacks into multiple 
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subtypes, this method can be time-intensive and less precise. The literature presents several ML models for 

classification. The Bayesian model [16], [17], for example, uses Bayes' theorem to train data and create a classification 

model. Hierarchical Intrusion Detection Employing ML and Knowledge Model. Consequently, adopting digital 

learning platforms at the higher education level offers the potential to transform learning and education by enhancing 

teachers' digital pedagogical skills and providing students with more equitable and sustainable learning opportunities. 

Additionally, various hybrid models have been introduced, including [18], which suggests a combined feature selection 

approach that integrates Information Gain, Random Forest Importance, and Recursive Feature Elimination to improve 

the performance of a Multilayer Perceptron (MLP). [19] introduces a dataset-based approach for designing an ensemble 

classifier specifically for the UNSW-NB15 dataset, tackling issues like class imbalance and feature overlap. 

This study presents a unified (IDS) that combines ML algorithms with knowledge-based approaches to effectively 

detect and classify network intrusions. The IDS integrates the grid search optimization algorithm and ANOVA 

techniques with the K-nearest neighbour (KNN) algorithm to examine the spatial and temporal characteristics of data 

traffic inside the network. For evaluation, the UNSW-NB15 benchmark dataset is utilized [20], proposing a varied 

series of patterns and an inherent imbalance between training and testing sets. The selection of features from the dataset 

is conducted rigorously through ANOVA-based mechanisms [21]. Subsequently, the KNN classifier undergoes 

hyperparameters optimization via grid search. The proposed IDS's performance is further evaluated using the KDD 99 

dataset, enabling a benchmark comparison with other established methodologies [22]. 

3. Methodology  

The proposed model introduced an innovative methodology that integrates Grid search optimization and ANOVA with 

the KNN algorithm to analyze spatial and temporal characteristics of the imbalanced dataset. The imbalanced dataset 

was treated by using the synthetic Minatory Oversampling technique (SMOTE). The Framework graph outlines the 

proposed study methodology as shown in figure 2. Mainly, the graph breaks down the model's workflow and highlights 

the integration of key components. 

 

Figure 2. Proposed model methodology 

The process begins with data collection using the NB15 dataset, which serves as the basis for both training and testing 

the model [23]. Following this, data exploration is conducted to gain a deeper understanding of the features and patterns 

within the dataset. This includes steps such as data cleaning, normalization, and the identification of trends or 

relationships. Subsequently, feature selection is carried out using the ANOVA method to pinpoint the most impactful 

features. This technique not only reduces dimensionality by focusing on features with statistically significant 

contributions but also enhances model accuracy by eliminating noise and irrelevant attributes. Moreover, it helps in 

distinguishing between normal and malicious network traffic. 

For model selection and optimization, the KNN algorithm is chosen due to its simplicity and effectiveness in binary 

classification tasks. To further refine the model, grid search optimization is applied to fine-tune key hyperparameters. 

This systematic approach evaluates combinations of parameter values, including the number of neighbors (k), the 

distance metric (such as Euclidean or Manhattan), and the weighting scheme (uniform or distance-based), to identify 

the optimal configuration. The training phase involves applying k-fold cross-validation to the selected features, which 
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helps mitigate overfitting. The model is then tested on a separate subset of the NB15 dataset to assess its generalization 

performance. The classification task involves two main goals: identifying whether an attack is present (binary 

classification) and predicting the specific category of the detected attack. Finally, model assessment is conducted using 

evaluation metrics such as accuracy, precision, recall, and the confusion matrix, providing a comprehensive 

understanding of the model's performance. 

3.1. Data Set  

This analysis utilizes the standard dataset UNSW-NB15, developed by Mustafa and Slay [19]. They analyzed typical 

network traffic patterns and categorized modern attack procedures into nine different types. The UNSW-NB15 dataset 

comprehends a broad range of mutually actual and imitation network traffic attacks. Moreover, features for the dataset 

were generated through a combination of conventional and novel approaches. The UNSW-NB15 dataset contains 49 

attributes, which can be classified into numerous sets. We split the dataset into training and testing segments. Table 1 

highlights specific features of the dataset, including data kinds and traffic attribute classes [24]. 

Table 1. The Features in UNSW_NB15 regarding data types and classes 

No. Group Name Data Type  No. Group Name Data Type 

1 

Flow 

Dstip Nominal  27 

Time 

Syncak Float 

2 Sport Integer  28 Djit Float 

3 Proto Nominal  29 ackdat Float 

4 Dsport Integer  30 Ltime Timestamp 

5 scrip Nominal  31 Sintpkt Float 

6 

Basic 

Service Nominal  32 Dintpkt Float 

7 Dur Float  33 Tcprit Float 

8 dttl Integer  34 Sjit Float 

9 Gloss Integer  35 stime Timestamp 

10 sttl Integer  36 

General Purpose 

Ct_ftp_cmd Integer 

11 sload Float  37 Is_ftp_login Binary 

12 sloss Integer  38 Ct_flw_http_mthd Integer 

14 

General Purpose 

state Nominal  39 Ct_state_til Integer 

15 sbytes Integer  40 Is_sm_ips_ports Integer 

16 Diaod Float  41 

Connection 

Ct_dst_sport_ltm Integer 

17 Spkts Integer  42 Ct_srv_ltm Integer 

18 Dpkts Integer  43 Class Integer 

19 

Content 

Swin Integer  44 Ct_src_ltm Integer 

20 Dmeansz Integer  45 Ct_src_doprt_ltm Integer 

21 Stcpb Integer  46 Attack_cat Nominal 

22 Dtcpb Integer  47 Ct_dst_src_ltm Integer 

23 Smeanz Integer  48 Ct_dst_ltm Integer 

24 dwin Integer  49 Ct_srv_src Integer 

25 res_bdy_len Integer      

26 trans_depth Integer      

3.2. Data Set Pre-Processing 

The dataset required a preprocessing phase, which involved several phases, such as data balancing, normalization, 

cleansing, discount, transformation, and feature selection. These stages are crucial as they directly touch the power of 

the classifier model [25]. The UNSW-NB15 has an inherent imbalance between training and testing data.  Addressing 

this issue, we already have applied class balancing techniques over the model training process to mitigate the impact 

of this imbalanced data set. Specifically, SMOTE has been used since this method is effective in handling imbalanced 

datasets [3].  Herein, the inputs are carefully selected from the UNSW-NB15 dataset for the suggested model, ensuring 

that the essential data preprocessing phases are applied. For example, the chosen training sets from UNSW-NB15 are 

free from redundant and duplicate records. Categorical variables, such as protocol and service types, were present in 

the NB15 dataset [26]. These variables were transformed into numerical values to make them suitable for machine 

learning algorithms, which typically require numerical inputs. We employed one-hot encoding for these categorical 

features, which involves creating a new binary column for each possible category. This transformation ensures that the 
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model can interpret the categorical data without implying any inherent ordering or ranking, as would be the case with 

label encoding [27]. 

 Data normalization was then performed by scaling the amount of every feature within a comparative variety, typically 

(0, 1), to prevent the dataset from being biased toward features with naturally higher values [28]. This step was carried 

out using the method outlined in Equation 1. Next, categorical data were converted into numeric values, and all attack 

types in the dataset were labeled as either 1 for abnormal instances or 0 for normal instances. This step simplifies the 

classification task and focuses on detecting malicious activities versus benign activities subsequently, only the regular 

data trials were extracted from the training sets [29], [30]. This extraction was necessary because the proposed model 

is designed to be applied during the early phases of a network's lifecycle, where it can initially learn from normal traffic. 

In the later stages, during the testing phase, the model should be capable of distinguishing between regular and attack 

traffic. Last of all, to confirm optimal training speed, the normal traffic instances obtained were gathered during the 

training phase to reduce the number of training registers. 

XNormalized =
X−Xmin

Xmax−Xmin
  (1) 

One-hot encoding allowed the model to effectively process categorical data, while normalization ensured that all 

features were scaled uniformly, enabling the KNN model to make precise distance-based decisions. These 

preprocessing techniques were crucial in minimizing model bias and enhancing overall classification performance. 

Furthermore, classification accuracy was chosen as the basis for assessment in terms of the performance metric used 

to evaluate the various procedures compared with the proposed model [4]. The formula for accuracy, recall, precision, 

and F-Measurement are provided in Eq. 2,3,4,5 respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
  (2) 

Recall= True Positive / (True Positive + False Negative)  (3) 

Precision= True Positive / (True Positive + False positive)  (4) 

F-Measure=2 * precision*Recall / (precision + Recall)  (5) 

However, accuracy alone is not sufficient for a thorough evaluation, especially for classification models. While 

accuracy is commonly used, it can be misleading in imbalanced datasets, such as those found in NIDS, as it may mask 

poor detection of minority classes, potentially leaving malicious activities undetected. Metrics like precision, recall, 

and the F-measure offer a more comprehensive evaluation. Precision helps minimize false positives, recall reduces 

false negatives, and the F-measure provides a balance between both [31], [32]. 

As a result, we have included additional evaluation metrics, such as the error matrix (or confusion matrix). This matrix 

provides a clear visualization of the algorithm’s performance, where each row represents the actual class and each 

column the predicted class, as shown in figure 3. True Positives (TP) indicate the number of correctly identified 

intrusions, with a high TP count demonstrating the model's effectiveness in detecting malicious activities [33], [34]. 

True Negatives (TN) reflect the number of correctly identified benign activities, ensuring that normal traffic is not 

mistakenly flagged as malicious and minimizing unnecessary alerts [35], [36]. False Positives (FP) correspond to 

benign activities incorrectly classified as intrusions, which can overload security personnel with false alarms and 

contribute to alert fatigue [37], [38]. False Negatives (FN) represent actual intrusions that the system fails to detect, 

creating a serious security risk as malicious activities may go unnoticed [39], [40]. 

 

Figure 3. Confusion Matrix metric 
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4. Findings and Discussions  

4.1. Data examination and simulation Trials 

This study conducted extensive trials on the proposed model for binary classification using the UNSW-NB15 dataset. 

The model was trained specifically on a Denial of Service (DoS) subset, detailed in table 1, with 82,323 samples used 

for training and 175,341 for testing. To evaluate the model's efficiency, several validation methods are available; cross-

validation methods are commonly employed to gauge prediction accuracy. In this study, at the beginning of the initial 

phase, we used K-fold cross-validation with K set to 1, which resulted in a straightforward train/test split to evaluate 

the model's efficiency in binary classification with minimal computational overhead. This initial setup allowed for 

rapid prototyping and early detection of potential issues such as increasing the risk of overfitting.  We recognize the 

usage of K=1 increased the risk of overfitting due to the lack of diverse validation sets. Therefore, to address this, the 

progression to K=10 cross-validation in the subsequent experiments was made. This adjustment provided a more 

comprehensive evaluation of model generalization capabilities by ensuring that each subset of the data was used for 

both training and validation [41], [42]. 

However, for deep learning-based NIDS, there are additional techniques to prevent overfitting, especially as these 

models are often more prone to overfitting due to their complexity [43], [44]. For instance, early stopping is a 

regularization technique that involves monitoring the model's performance on the validation set during training. If the 

validation performance starts to degrade while the training performance continues to improve, training is halted early 

to prevent overfitting. This helps in finding the optimal model before it starts to memorize the training data. 

 Herein, the proposed (NIDS) framework is implemented via Scikitlearn library and Python programming languages. 

They were utilized to train the model for Binary classification. Concerning the task of categorizing data. The 

implementation of the KNN model incorporated several strategic enhancements aimed at optimizing performance and 

achieving accurate predictions [45], [46]. To begin with, feature scaling was applied using the StandardScaler function 

to standardize all features to a uniform scale. This step is crucial for distance-based algorithms like KNN, as it prevents 

features with larger value ranges from exerting undue influence on the model’s predictions [47], [48]. 

Looking further to strengthen model robustness, Feature selection was undertaken to explore the potential benefits of 

adding, removing, or transforming features based on domain-specific knowledge. The goal of these adjustments is to 

advance the model's generality capabilities by aligning input features more accurately with the underlying patterns in 

the data. Initially, we assessed the relationships between features through correlation analysis as shown in figure 4. 

Also, an Analysis of Variance (ANOVA) to evaluate the significance of these relationships. ANOVA is 

computationally efficient when compared to more complex feature selection methods such as Recursive Feature 

Elimination (RFE). It evaluates features independently, without involving iterative processes or requiring the training 

of machine learning models, making it suitable for large datasets0.  ANOVA can help in avoiding overfitting since it 

focuses on selecting features that are truly relevant to the target variable, as consequent it reduces the risk of including 

irrelevant features, which can lead to overfitting in downstream models. In addition, compatibility with Other 

Techniques. ANOVA works well as a preprocessing step for machine learning pipelines such as including KNN [3]. 

ANOVA, a statistical method, is employed to regulate whether there are substantial variances in the means among 

various categories. Within feature selection, ANOVA is particularly useful for assessing whether certain features show 

important variation across categories or groups in the data. This insight is valuable for understanding feature 

importance, aiding in the selection of features that are most likely to enhance the predictive model's capability to 

differentiate amongst classes or groups. Figure 4 represents the feature correlation analysis.  
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Figure 4. Feature correlation analysis. 

Furthermore, hyperparameter optimization was carried out using GridSearchCV to determine the best KNN settings. 

By exhaustively searching through a specified parameter grid, GridSearchCV identifies the combination of parameters 

that maximizes model accuracy. The KNN model was then trained with these optimized parameters, ensuring it was 

fine-tuned to perform optimally with the dataset. In addition, hyperparameter optimization was conducted using 

GridSearchCV to determine the optimal settings for the KNN model. Table 2 represents a detailed description of the 

grid of hyperparameters tested. Specifically: For K in KNN, we tested several values such as Neighbors values, several 

distance metrics, and Additional hyperparameters. 

Table 2. hyperparameters evaluation set for optimization to use in grid search 

Neighbors’ values distance metrics Additional hyperparameters 

[3 ,5 ,7  ,9 ,11 ]  Euclidean, minkowski and Manhattan uniform and distance 

Through an exhaustive search across a defined parameter grid, GridSearchCV identified the parameter combinations 

that maximized model accuracy. The KNN model was subsequently trained with these optimized parameters, ensuring 

it was fine-tuned to deliver peak performance on the dataset. On accomplishment trials, it is possible to be assured that 

the detectives take finalized wide trials on the KNN model via attempting varied hyper-parameters, as shown in figure 

5. 

 

Figure 5. Grid search hypermeters optimization result 
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4.2. Outcomes Exploration 

Many ML models that perform binary classification on datasets like UNSW-NB15 rely on feature engineering due to 

the high dimensionality of the data [31], [32],[33], [34], [35]. For example, [6] applied a filter-based feature reduction 

technique, while [7] employed a wrapper-based feature extraction approach. Additionally, [8] developed a hybrid 

model combining a Genetic Algorithm (GA) with logistic regression, tested on both the UNSW-NB15 and KDDCup99 

datasets. The results demonstrated that this model achieved an overall accuracy of 81.42% when using the full feature 

set. [9] introduced a classifier based on the Least Squares Support Vector Machine (LS-SVM), which attained an 

accuracy of 78.86%. Meanwhile, [10] The authors performed a thorough analysis of the dataset using the Weka 

instrument, applying numerous algorithms including the feature assessor, Ranker method, Greedy Stepwise, and 

Information Gain. They evaluated the performance of each subset through the Kappa Statistic, and the findings 

indicated that the tRF classifier emerged as the most effective approach, achieving an accuracy rate of 75.66%. 

Another IDS system was developed utilizing the UNSW-NB15 dataset by Kappa Statistic, where the authors 

incorporated the Information Gain method into their model, alongside a combined rule-based approach that involved 

manifold tree classifiers [36], [37], [38], [39], [40]. The outcomes from their IDS model showed an accuracy of 57.01% 

[11]. Though, they suggested that the model could be improved by incorporating substitute machine learning 

techniques, rather than focusing solely on tree-based approaches [41], [42], [43], [44], [45]. Maajid and Nalina [12] 

proposed an IDS system established on ML, such as the Random Forest (RF) algorithm. The results indicated that the 

RF algorithm achieved the best performance, with a correctness of 75.56%. Gao et al. [13] introduced a mixture IDS 

system that utilized an Advanced Principal Component Analysis (APCA) method combined with an enhanced version 

of the Extreme Learning Machine (IELM). This model was trained and tested on the dataset, and the results revealed 

that the IELM-APCA approach attained an accuracy of 70.51%. Additionally, Kaiyuan et al. [14] proposed an 

integrated NIDS framework that merges CNN with Bidirectional Long-Short Term Memory (Bi-LSTM). This CNN-

Bi-LSTM model was taught and assessed by the aforementioned dataset. The results revealed that the model of CNN-

Bi-LSTM realized a correctness of 77.16%. 

In this research, the proposed model conducted the cross-validation into the GridSearchCV process to guarantee a 

consistent evaluation of the model. This approach evaluates the model’s efficiency through multiple data partitions, 

decreasing the risk of overfitting and giving a further accurate estimate of its predictive capabilities. These combined 

strategies fortify the KNN model, supporting a rigorous approach to binary classification.  

Using k=1, k-fold cross-validation corresponds to the leave-one-out cross-validation approach. In this method, the 

model is trained on n−1 samples (where n is the total number of samples) and tested on the single remaining sample. 

This process is repeated for all n samples, and the performance metrics are averaged, when the model is prone to 

overfitting, using k=1 in cross-validation may lead to higher variance in results compared to k  .Overfitting Impact may 

cause higher accuracy on training Data: since the training set is very similar to the full dataset (only one sample is 

excluded), an overfitted model will likely perform very well on the training data. This might cause the model to perform 

less consistently across different test samples. Also, more sensitivity to outliers: with k=1, the model's test set contains 

only one sample. If this sample is an outlier or unusual, the performance will be heavily impacted for that iteration, 

leading to potentially skewed results when averaged.  Predicted changes to metrics and accuracy are likely to remain 

high due to the large training set for each iteration [46], [47], [48]. Precision may decrease if the model struggles to 

generalize for rare positive cases when overfitting. Recall might still be high as overfitted models often aim to predict 

most cases in the dominant class correctly. Confusion matrix, the model might misclassify outliers more often, 

increasing false positives or false negatives. As shown in table 3. 

Table 3. Performance metrics when using K-ross validation with k=1, k=10. 

K Accuracy Recall Precision 

1 99.05% 98.84% 98.34% 

10 99.10% 99.71% 99.42% 

However, the information in  table 3 demonstrates the efficiency when using K-ross validation with k=10.  It can be 

perceived that the proposed model attained impressive results when the grid and ANOVA techniques were applied. 
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For illustration, the proposed model accomplished an exactness of 99.1, a recall of 99.4, and a precision of 99.4.  the 

suggested model.  These results endorse that the proposed model is functioning and accurate in binary classification in 

a validation dataset. In addition, we utilized supplementary metrics to assess the effectiveness of the suggested model. 

Specifically, as shown in table 4, we employed the confusion matrix based on two experiments based on K cross 

validation k=1, k=10.  

Table 4. The evaluation of the presented model was conducted using the Confusion Matrix 

K Actual Predicted: 0 Predicted: 1 

1 
0 TN = 32,548 FP = 312 

1 FN = 216 TP = 18,459 

10 
0 TN = 18,487 FP = 188 

1 FN = 271 TP = 32,589 

The confusion matrix reveals the model's efficiency and highlights instances where the model made incorrect 

predictions. Specifically, it indicates the number of true positives, where the model correctly predicted the class and 

the sample belongs to that class, as well as true negatives, where the model appropriately predicted the class as well. 

As shown in table 4, the number of true positives predicted is 32,589, and the number of true negatives is 18,487. On 

the other hand, the confusion matrix also identifies false predictions, where the model incorrectly classifies samples 

that they do not belong to. These misclassifications are reflected in the false positive and false negative values. The 

false positives are 271, and the false negatives are 188. Table 5 represents the comparison of the accuracy of the 

proposed integrated and optimized model with other available ML and DL models from the collected works. 

Table 5. A comparison of the accuracy of the proposed integrated and optimized model with other available ML and 

DL models from the collected works. 

The IDEs  The core ML and DL algorithm in the model Accuracy 

[7] IELM-APCA 70.51%. 

[8] GAwith LR 81.42% 

[9] Least Square SVM  78.86% 

[10] tRF classifier 75.66%. 

[12] RF algorithm 75.56% 

[14] CNN-Bi-LSTM 77.16%. 

 The Proposed model  99.10% 

Similarly, figure 6 disclosures of the accuracy of the obtainable proposed model per additional available ML and DL 

models for the binary classification task. 
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Figure 6. illustrates the accuracy comparison between the proposed model and supplementary models for binary 

classification Discussion. 

The KNN model introduced in this study, integrating Grid Search and ANOVA algorithms, demonstrated an impressive 

accuracy of 99.1% in binary classification tasks using the UNSW-NB15 dataset. This performance surpassed numerous 

established approaches compared to the identical dataset, including the CNN-Bi-LSTM model (77.16%) [30], GA with 

LR model 81.42%[8], IELM-APCA (70.51%) [24], the Random Forest (RF) algorithm (75.56%) [28], LS-SVM 

(78.86%) [26], among others. 

5. Conclusion 

In summary, the proposed NIDS framework integrates ANOVA-based feature selection with grid search optimization 

and the KNN algorithm to tackle the complexities of network intrusion detection. Utilizing the UNSW-NB15 dataset, 

the model reaches an exceptional binary classification accuracy of 99.1% through meticulous hyperparameter tuning. 

A thorough experimental analysis, along with extensive benchmarking against advanced machine learning and deep 

learning techniques, clearly showcases the reliability and exceptional performance of the proposed model. The results 

highlight its ability to consistently outperform existing approaches, demonstrating its potential to significantly enhance 

the effectiveness of network security systems. This evaluation underscores the model's robustness, indicating that it 

can effectively address the complexities of modern network threats. Furthermore, the model's superior capabilities 

make it a valuable tool for improving the detection and prevention of intrusions, ensuring its practical applicability in 

real-world security environments. The proposed model can be integrated with existing intrusion detection systems 

(IDS) as a modular component. For instance, it can function as a pre-processor to filter anomalous traffic or as an 

additional layer of defense for classifying potentially malicious activities. However, our study focused on the K-Nearest 

Neighbors (KNN) algorithm, we acknowledge that other classification algorithms such as Deep Learning models can 

be employed. Further, the proposed model has been trained and tested on historical data the same as other current 

models, but it would involve integrating the model with real-time network monitoring tools, which would allow for 

continuous detection and rapid response to emerging threats. Also, we plan to test it on a variety of different datasets 

beyond the NB15 dataset. Evaluating the model on other well-known datasets, such as KDD Cup 99, CICIDS, 
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