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Abstract 

The detection of geospatial objects in surveillance applications faces significant challenges due to the misclassification of object boundaries in 
noisy and blurry satellite images, which complicates the detection model's computational complexity, uncertainty, and bias. To address these 
issues and improve object detection accuracy, this paper introduces the Deep Wiener Deconvolution Denoising Sparse Autoencoder 
(DWDDSAE) model, a novel hybrid approach that integrates deep learning with Wiener deconvolution and Denoising Sparse Autoencoder 
(DSAE) techniques. The DWDDSAE model enhances image quality by extracting deep features and mitigating adversarial noise, ultimately 
leading to improved detection outcomes. Evaluations conducted on the NWPU VHR-10 and DOTA datasets demonstrate the effectiveness of the 
DWDDSAE model, achieving notable performance metrics: 96.32% accuracy, 86.88 edge similarity, 75.47 BRISQUE, 28.05 IQI, 38.08 PSNR 
(dB), 0.883 SSIM, 98.25 MSE, and 0.099 RMSE. The proposed model outperforms existing methods, offering superior noise and blur removal 
capabilities and contributing to Sustainable Development Goals (SDGs) such as SDG 9 (Industry, Innovation, and Infrastructure), SDG 11 
(Sustainable Cities and Communities), and SDG 13 (Climate Action). This research highlights the model's potential for inclusive innovation in 
object detection applications, showcasing its contributions and novel approach to addressing existing limitations. 
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1. Introduction  

Detecting geospatial multi-scale objects from high-resolution (HR) and very high-resolution (VHR) aerial and satellite 

images is a critical and challenging task. Accurate detection is essential for various monitoring applications, where 

determining both the location and the category of objects at different scales ensures reliability [1]. This task becomes 

significantly more complex due to the presence of noise and blur in the images, which can arise from various factors, 

including sensor limitations, atmospheric conditions, and disturbances during data capture. Aerial images often suffer 

from high noise levels due to these disturbances [2]. Factors such as calibration errors, sensor noise characteristics, 

random fluctuations in pixel values, as well as motion of the camera or the object, can further introduce imperfections 

in the data. Additionally, atmospheric conditions like haze, fog, and scattering contribute to image noise and blur, 

severely affecting the clarity and quality of the captured images [3]. 

In geospatial object detection, image pre-processing—specifically denoising and deblurring—is a crucial step to restore 

the clarity of the images and improve detection accuracy [4]. However, this process is highly complex due to the 

varying scales and types of noise involved. Despite the challenges, numerous methods, including Deep Learning and 

Machine Learning techniques, have been developed to address the issue of noise and blur in satellite images [5]. While 

these methods have shown some success, there is still a need for more effective approaches that can handle the diverse 

nature of geospatial data [6]. 

The objective of this paper is to propose a novel approach for addressing noise and blur in aerial images using a hybrid 

model that integrates advanced image processing techniques. The proposed model, named Deep Wiener Deconvolution 

Denoising Sparse Autoencoder (DWDDSAE), combines the strengths of deep learning, Wiener Deconvolution, and 
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Denoising Sparse Autoencoder methods. In addition, Black Hat Transformation and Gaussian Filtering techniques are 

employed to further enhance image quality. Black Hat Transformation is used to enhance dark objects in bright 

backgrounds, while the Gaussian Adaptive Bilateral Filter smoothens the image and preserves edge information. These 

pre-processing steps significantly improve image clarity, making it easier to detect geospatial objects [7]. 

The DWDDSAE model applies deep-learned features in the framework of Classical Wiener Deconvolution, refining 

the features to predict deblurred images and enhance the small-scale clean image features [8]. The Denoising Sparse 

Autoencoder (DSAE) combines Denoising Autoencoder (AE) and Sparse AE to learn features from both noisy and 

clean images, effectively reducing noise while improving generalization [9]. This hybrid model is designed to provide 

a more robust and accurate solution for denoising and deblurring satellite images. 

The primary contribution of this paper is the development of the DWDDSAE model, which integrates multiple 

advanced techniques to address the challenges of noise and blur in geospatial images [10]. The effectiveness of this 

model is evaluated using two benchmark datasets—NWPU VHR-10 and DOTA—under both real-time and controlled 

conditions [11], [12]. The structure of this paper is as follows: Section 2 provides a survey of related work, Section 3 

explains the proposed DWDDSAE-based image pre-processing model, Section 4 discusses the experimental results, 

and Section 5 concludes with a summary and suggestions for future research directions [13], [14], [15], [16], [17]. 

2. Literature Review 

Many machines learning (ML) and deep learning (DL) methods have been predominantly employed for denoising and 

deblurring in the pre-processing stage of geospatial object detection. Asokan and Anitha [1] proposed an optimized 

bilateral filter using Adaptive Cuckoo Search (ACS), Cuckoo Search (CS), and Particle Swarm Optimization (PSO) 

for denoising satellite images while preserving edges. The model, tested on Landsat satellite images, demonstrated that 

the ACS-optimized bilateral filter achieved the best Peak Signal-to-Noise Ratio (PSNR), mean square error (MSE), 

feature similarity index, and entropy, while reducing computational complexity by 43% in CPU time. 

Zhu et al. [2] presented a blind deblurring method based on a Feature Alignment Module (FAFM) and a Feature 

Importance Selection Module (FISM) within a Generative Adversarial Network (GAN) framework. Tested on both 

synthetic remote sensing datasets and real satellite images, this approach demonstrated enhanced texture and detail 

recovery. Thai et al. [3] proposed a hybrid Riesz-Quincunx UNet variational autoencoder (RQUNet-VAE) to denoise 

satellite imagery, showing superior noise reduction in image processing tasks. 

Li et al. [4] introduced a coupled segmentation and denoising/deblurring model for hyperspectral material 

identification, which showed significant improvements in denoising and segmentation performance on remote sensing 

data. Fang et al. [5] developed a multitasking framework for motion deblurring in remote sensing images, which 

includes an image restoration branch using a U-Net architecture for spatial detail preservation and a multilayer 

perception network for texture complexity recognition. The model achieved PSNR values of 27.7761 dB in the 

SydneyBlurred dataset, 27.5526 dB in UCMBlurred, and 27.0272 dB in AIDBlurred, along with strong Structural 

Similarity Index (SSIM) scores. 

Han et al. [6] introduced a non-blind deblurring method to address inaccurately estimated blur kernels. Their model 

used joint sparsity regularization and an iterative algorithm alternating between latent image estimation and bias 

correction, effectively managing kernel errors in benchmark and real blurred remote sensing datasets. Song et al. [7] 

proposed a Wavelet Sub-band Cycle-Consistent Adversarial Network (WavCycleGAN) to remove vertical stripe and 

wave noise from multispectral satellite images. The model, leveraging wavelet sub-bands for noise direction learning, 

produced effective noise removal with an average PSNR of 52.32 dB while preserving edges and detailed information. 

Zhang et al. [8] presented a joint denoising and deblurring approach targeting blur and stripe noise using residual stripe 

components and gradient properties. Tested on real blurred and noisy images from orbiting satellite sensors, the method 

outperformed existing techniques in both quantitative metrics and visual quality. However, the model faced limitations 

in modeling multiple degradations for real-world imagery across various modalities. 

Burdziakowski [10] applied Conditional Generative Adversarial Networks (GANs) to deblur UAV images, improving 

geometric accuracy and interpretability, particularly in terms of texture and edge sharpness, even for large blur kernels. 
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However, the model had difficulties with some ground control points and photogrammetric targets that were not 

properly deblurred. 

Jing et al. [12] introduced a Denoising Diffusion Probabilistic Model-Cloud Removal (DDPM-CR) method to remove 

noise and clouds from optical remote sensing imagery. By utilizing multispectral optical images from Copernicus 

Sentinel-2 and SAR images from Sentinel-1, their model achieved superior performance, with a mean absolute error 

(MAE) of 0.0229, root mean square error (RMSE) of 0.0268, PSNR of 31.7712, and SSIM of 0.9033. However, it 

exhibited some limitations in handling lower resolution images with thick clouds. 

Zeng [14] proposed an evolved processing model for high-precision remote sensing images by employing fourth-order 

differential equations (FD) and Dual-Tree Complex Wavelet Transform (DTCWT) to decompose multi-scale images 

into low- and high-frequency sub-bands. The FD-DTCWT model achieved a normalized RMS error of 0.02 and a noise 

variance of 0.03, with structure similarity of 0.74, PSNR of 25.3 dB, and normalized SNR of 0.76. Nevertheless, the 

model's higher computational complexity posed challenges in shortening denoising time. 

Wang et al. [15] proposed a Self-Supervised Hyper Spectral Image Denoising Network (SHDN) that utilized a noise 

estimator to handle complex real-world noise. Their model outperformed competing methods on airborne, UAV, and 

ground-based hyperspectral image datasets. Yang et al. [16] developed a super-resolution and deblurring network 

(SRDN) based on an end-to-end GAN to improve low-quality space target images, which often suffer from poor 

reliability in manual classification. Experiments on the BUAA-SID-share1.5 satellite dataset showed that SRDN 

outperformed state-of-the-art deblurring techniques, although it exhibited instability during GAN training. 

3. Research Method 

The proposed DWDDSAE-based pre-processing model comprises three processes: Black Hat Transformation, 

Gaussian Adaptive Bilateral filtering and DWDDSAE-based denoising and deblurring. Figure 1 demonstrates the 

proposed pre-processing model. 

 

Figure 1. Flow process of Proposed Model 

3.1.  Black Hat Transformation 

Black Hat Transformation is a morphological operation used in image processing to enhance dark objects on a light 

background [18]. The Black Hat Transformation highlights the features and details those brighter surroundings may 

overshadow. The input image is subtracted from its closing to attain the Black Hat Transformation. Mathematically, if 

𝐶 is the input image and 𝐿 is its closing, then the Black Hat transformation 𝐻 is given by: 

C = L − H (1) 

The result shows the highlights of dark structures, objects, or details against a lighter background. 
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3.2.  Gaussian Adaptive Bilateral Filtering  

Gaussian Adaptive Bilateral Filtering extends the traditional bilateral filter, incorporating adaptive spatial and range 

weights based on local image statistics. The approach allows the filter to preserve edge and details with intensity 

variations and varying noise. The bilateral filter balances smoothing and preserving the image considering the spatial 

proximity of pixels and intensity. The disadvantage of the standard bilateral filter is that it doesn’t have fixed spatial 

and range parameters, which can’t be optimal for the images in all the regions. The Gaussian Adaptive Bilateral, locally 

based on the characteristics of the neighborhood, adjusts the filter of the spatial and range parameters. This adaptation 

can be achieved by computing the mean and standard deviation to maintain the information and edges along with the 

filter parameters of the image [19]. 

3.3.  DWDDSAE-based Model  

DWDDSAE combines two models: Deep Wiener Deconvolution (DWD) and DSAE. To obtain optimal performance, 

these two models are integrated. Figure 2 illustrates the proposed DWDDSAE model architecture. DWD is a Neural 

Network-based model designed for the restoration of image tasks, specifically utilizing principles of Wiener 

deconvolution to enhance its performance on complex image restoration problems by adding the power of deep 

learning.  

 

Figure 2. Architecture of Proposed DWDDSAE Model 

Deep Wiener deconvolution is a signal processing technique used to recover an original signal from a degraded or 

blurred version of that signal. The DWD proposed model network consists of multi-scale feature refinement based on 

a feature deconvolution model [20]. To address the challenge of image deblurring, a DWD network is tailored to 

incorporate a feature-based Wiener deconvolution (FBWD) module to enhance the deblurring process for blurry input 

images by leveraging information based on the extracted feature. 

 Fiy = KFix + Fin, ∀ i = 1, … , M (2) 

Here, Fiy, n, k, y, x   are the forms of vector of Fiy, n, k, y, x. 

Let {𝑓𝑖} 𝑀
𝑖=1

 is the linear filter set utilized to get the information on the features from the unclear image. The FBWD 

explicitly unravels the features. 𝐹𝑖𝑦 present in the blurry input. This is achieved through the identification of a set of 

operators tailored for feature-based Wiener deconvolution, allowing us to recover the features as: 

Fix̂ =  GiFiy, ∀ i = 1, … , M (3) 

Here, 𝑥 denoted as clear image latent. To get the latent features, the mean squared error is minimized. 

ei =   E(|Fix − Fix̂|2) = E (|Fix − GiFiy|2) =           E (|Fix −  Gi(KFix +  Fin)|2) (4a) 

ei = (1 − GiK)(GiK)TE(|Fix|2) − (1 −           GiK)Gi
T  E(Fix(Fin)T)

−  (1 −  GiK)TGiE( (Fix)TFin) + GiGi
TE(|Fin|2) 

(4b) 

Here, Expectation is denoted by E. Assuming that the noise is independent of the clear image and having zero mean, 

derived as: 
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E(Fix(Fin)T) = E(Fix)E((Fin)T) = 0 and                  E((Fix)TFin) = E((Fin)T)E(Fin) = 0 (5) 

Here E(| Fix|2) and E(| Fin|2) are rewritten as si
n and si

x in Eq. (4b) 

ei = (1 −  GiK)(1 − GiK)T si
x +  GiGi

Tsi
n (6) 

To decrease 𝑒𝑖, estimate the derivation of Eq. (6) with res. to 𝐺𝑖 and specify the value to 0: 

(KTKsi
x + si

n)Gi − KTsi
x = 0 (7) 

The FBWD operator 𝐺𝑖, 

   Gi =
KT

KTK + si
n/si

x  = F−1 (
F(K)̅̅ ̅̅ ̅̅

F(K)̅̅ ̅̅ ̅̅  F(K) +
si

n

si
x

) (8) 

Here, the Fourier transform is implied as 𝐹 and 𝐹(𝐾)̅̅ ̅̅ ̅̅ ̅ is the fuse of F(𝐾). The information of the feature is extracted 

from the unclear images using these functions, and the SD and variance of the unclear feature are assessed to 

approximately reconstruct the pixels by Wiener Deconvolution. Then, these output images are fed as input to the DSAE 

module. 

The proposed DSAE is a devised feed-forward unsupervised neural network algorithm used to train and learn a 

compacted depiction of an input 𝑓(𝑥). The standard auto encoders (AE) have encoder and decoder parts. The encoder 

incorporates decreasing hidden layers, which uses weight and bias to encode the data, and the decoder attempts to 

reconstruct the actual data with the increasing hidden layers. This type of AE uses multiple layers, requiring more 

parameters to tune during the training process. The input data of DSAE is taken as 𝑥 = [𝑥1, 𝑥2, … … 𝑥𝑚] and it 

transforms the input using the activation function as the hidden feature vector ℎ = [ℎ1, ℎ2, … ℎ𝑝]. The output points or 

the reconstruction vector is represented as 𝑧 = [𝑧1, 𝑧2, … … 𝑧𝑚]. The computation of hidden and output vectors are 

illustrated below, 

h = Sg(Wx + b) (9) 

z = Sf(W′y + b′) (10) 

Where, 𝑆𝑔 denotes the hidden tier function for activation and 𝑆𝑓 is the output layer’s activation function. The sigmoid 

and ReLU are generally used as the activation function.  𝑊and 𝑊′denotes weights and 𝑏′,  𝑏 are the biases. The cost 

function of the standard AE is specified as follows, 

𝐶1 =
1

2
∑(𝑧𝑖 − 𝑥𝑖)2 + 𝛽 (∑ 𝑟𝑙𝑜𝑔

𝑟

�̂�𝑗
 

𝑝

𝑗=1

+ (1 − 𝑟)𝑙𝑜𝑔
1 − 𝑟

1 − �̂�𝑗
)

𝑚

𝑖=1

 (11) 

The proposed DSAE method uses ReLU activation in the hidden layer because of its better performance in the non-

stationary data. Next, the non-linear transformation of the output layer is set as 𝑡𝑎𝑛ℎ function, and it is expressed as 

𝑧𝑖 = 𝑡𝑎𝑛ℎ(∑ 𝑊𝑖𝑗ℎ𝑗)

𝑝

𝑗=1

 (12) 

Further, the weight decay term 𝜆 is added to Eq. (11) to limit the overfitting issue, and it is expressed as,   

CT =
1

2
∑ (zi − xi

m
i=1 )2 +

λ

2
∑ ∑ ((Wij)

2 + (Wjk)2)
p
j=1

m
i,k=1  +β (∑ r log

r

r̂j
+ (1 − r)log

1−r

1−r̂j

p
j=1 ) (13) 

The decay strategy introduces many connecting weights and reduces the sparsity. The quality of reconstruction and 

sparsity is enhanced by curtailing the negative weights with the assistance of non-negative constraints. The cost 

function with non-negative constraint is expressed as follows,  
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CE =
1

2
∑(zi − xi

m

i=1

)2 +
δ

2
∑ ∑ ∑ G(WJI

(L)
)

SL+1

J=1

SL

I=1

2

L=1

+ β (∑ r log
r

r̂j
+ (1 − r)log

1 − r

1 − r̂j

p

j=1

) (14) 

Where, G (WJI
(L)

) = {
(WJI

(L)
)

2
  WJI

(L)
< 0

0               WJI
(L)

≥ 0  
 

In Eq. (13), the second term represents the non-negative constraint, 𝛿 indicates the penalty coefficient, 𝐶𝐸denotes the 

enhanced cost function, and 𝐿th layer node dimension is represented as 𝑆𝐿. To maintain the 𝐶𝐸  value as a minimum, 

the training phases have to adjust the weight  𝑊𝐽𝐼
(𝐿)

. The weights are updated utilizing gradient descent with back 

propagation. It is represented as below,  

WJI
(L)

= WJI
(L)

− η
∂CM

∂WJI
(L)

         L = 1,2 (15) 

Here, η denotes the learning rate and   WJI
(1)

= Wjk, WJI
(2)

= Wij,  
∂CM

∂WJI
(L) =  

∂C1

∂WJI
L + δg(WJI

L), 

g(WJI
L) {

(WJI
(L)

)
2

  WJI
(L)

< 0

0               WJI
(L)

≥ 0  
 

Now, the DSAE is trained with clean images as input and the corresponding noisy images as target output. During 

training, the autoencoder learns to encode a sparse representation that captures the essential features of the clean 

images. After training, the autoencoder can be evaluated on noisy test images. The encoder part of the model is used 

to obtain a sparse representation of the noisy input, and the decoder reconstructs the denoised image. These images can 

be fed to the classifier model to detect the geospatial objects more accurately.  

3.4.  Algorithm: DWDDSAE-based model 

The proposed algorithm for denoising and deblurring satellite images begins by taking raw satellite images as input, 

with the desired output being clean, denoised, and deblurred images. The process initiates by applying a Black Hat 

transformation to enhance the image contrast, followed by Gaussian Adaptive Bilateral filtering to smoothen the image 

while preserving edges. For each image, latent features are extracted, and Directional Wavelet Decomposition (DWD) 

operators are set. The mean squared error (MSE) is then estimated, and noisy, blurred latent features are identified. 

Subsequently, a Forward Backward Wavelet Decomposition (FBWD) is applied, and the Fourier transform of the 

FBWD operators is estimated. Using DWD, the pixel values are reconstructed to restore image quality. Figure 3 

illustrates the step-by-step process of the proposed DWDDSAE-based model for image denoising and deblurring. This 

diagram outlines the sequence of operations, including image preprocessing, feature extraction, transformation, and 

reconstruction, highlighting the key stages involved in the model's workflow. 

 

Figure 3. Algorithm steps of the proposed DWDDSAE-based model. 
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The output from this stage is fed into the Deep Sparse Autoencoder (DSAE) encoder. For each input image, it is 

transformed into a hidden feature vector h, and hidden and output vectors are computed. The DSAE cost function is 

estimated, followed by the application of non-linear transformations at the output layer. A sparse representation of the 

image is performed, reshaping the pixels for further refinement. The denoising process is applied at this stage, where 

the cost function is optimized with a non-negative constraint to ensure accurate pixel reconstruction. Finally, the 

decoder reconstructs the noisy pixels into their original form, producing a clean and enhanced satellite image.  

4. Results and Discussion  

The DWDDSAE-based model is implemented using the PyCharm tool and written in Python. The evaluations are 

performed using NWPU VHR-10 and DOTA datasets. This dataset has 757 airplanes, 302 steamships, 655 tanks for 

storage, 390 diamonds, 524 tennis courts, 159 basketball courts, 163 ground field tracks, 224 ports, 124 bridges and 

477 transportations. DOTA dataset (v.2.0) has 18 classes, 11,268 images and 1,793,658 objects. The sample input and 

output images obtained in this study for both datasets are shown in figure 4 and figure 5. 

  

a) Input image b) Output image 

Figure 4. Sample Outputs of NWPU VHR-10 Dataset 

  

a) Input image b) Output image 

Figure 5. Sample Outputs of DOTA Dataset 

The proposed DWDDSAE-based model is evaluated in terms of accuracy, edge similarity, Blind/Reference less Image 

Spatial Quality Evaluator (BRISQUE), IQI, PSNR, Structural Similarity Index (SSIM), MSE, RMSE and Execution 

time per image. 

Accuracy is computed between the true denoised pixels and the noisy pixels. It is also called pixel accuracy.  

Accuracy =
Number of true pixels

Number of all pixels
 (16) 

Edge similarity is often used to compare edges detected in images based on the Euclidean distance between edge 

features. If E1 and E2 are two edges with their respective feature vectors as F1 and F2, the feature vectors might include 

properties such as edge strength, orientation, and location. 
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Edge Similarity = √∑ (F1i − F2i)
2

n

i=1
 (17) 

BRISQUE is a no-reference image quality assessment process, which means it can evaluate the quality of an image 

without requiring a reference image for comparison. It operates by extracting a set of spatial domain features from the 

input image, which capture various statistics and properties of the image and is given by 

BRISQUE = ∑ wi × fi

N

i=1
 (18) 

Here, N denotes the number of features, 𝑤𝑖 denotes the weight of the i-th feature and 𝑓𝑖 denotes the value of the i-th 

feature extracted from the image. 

IQI is a metric used to assess the quality of an image, typically by comparing it to a reference image or by analyzing 

its characteristics. It is computed by 

IQI =
Quality of Processed Image

Quality of Original Image
× 100% (19) 

PSNR measures the ratio between the maximum possible power of an image and the power of corrupting noise that 

affects the fidelity of its representation. 

PSNR = 10 × log10 (
MAX2

MSE
) (20) 

Here, MAX is the maximum possible pixel value of the image, and MSE is the mean square error. 

SSIM is a metric used to quantify the similarity between two images, typically an original image and a processed or 

reconstructed image. It combines local image structure, luminance, and contrast into a single local quality score. In this 

metric, structures are patterns of pixel intensities, especially among neighboring pixels, after normalizing for luminance 

and contrast. For two images, x and y, SSIM is given by 

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx
2 + σy

2 + c2)
 (21) 

Here, 𝜇𝑥 , 𝜇𝑦 denotes the mean values of x and y, respectively, 𝜎𝑥
2, 𝜎𝑦

2 denotes the variances of x and y, respectively, 

𝜎𝑥𝑦 denotes the covariance of x and y, and 𝑐1, 𝑐2 denotes the stabilizing constants.  

MSE is used to measure the difference between the pixel values of two images, such as an original image and a 

reconstructed image. It is given by 

MSE =
1

N
∑ (Ii − Ki)

2
N

i=1
 (22) 

Here, N denotes the number of image pixels, 𝐼𝑖 denotes the pixel value of the original image at position i, and 𝐾𝑖 denotes 

the pixel value of the reconstructed image at position i. 

RMSE is used to quantify the accuracy of a predictive model or the difference between two sets of images. RMSE is 

computed as the square root value of the MSE. 

RMSE = √
1

N
∑ (Ii − Ki)

2
N

i=1
 (23) 

Execution time per image is the time taken by the proposed model to estimate and remove the noise and blur in an 

image. The results are obtained by varying the noise and blur levels consistently. Table 1 presents the performance 

results of the proposed DWDDSAE-based model on two datasets: NWPU VHR-10 and DOTA. The table summarizes 

various evaluation metrics across different levels of noise and blur. 
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For the NWPU VHR-10 dataset, the accuracy, edge similarity, BRISQUE, IQI, PSNR, SSIM, MSE, and RMSE are 

reported for noise/blur levels of 0%, 10%, 20%, and 30%. The results show that as the noise/blur level increases, the 

accuracy, edge similarity, and PSNR tend to decrease, while MSE and RMSE generally increase. Despite these 

changes, the model maintains relatively high performance, with accuracy ranging from 92.49% to 94.32% and PSNR 

values from 30.57 dB to 36.55 dB. For the DOTA dataset, similar metrics are evaluated. The model performs 

exceptionally well, with accuracy values ranging from 98.32% to 98.53% across the different noise/blur levels. Edge 

similarity and PSNR values are high, particularly at 0% and 10% noise/blur levels. However, as the noise/blur level 

increases to 30%, there is a notable decline in edge similarity and PSNR, with corresponding increases in MSE and 

RMSE. 

Table 1. Performance results for nwpu vhr-10 and dota datasets 

Dataset 
Noise/ Blur 

level (%) 

Accuracy 

(%) 

Edge 

Similarity 
BRISQUE IQI 

PSNR 

(dB) 
SSIM MSE 

RMSE 

 

Execution 

Time (s) 

NWPU 

VHR-10 

0 94.32 60.63 75.46 28.06 36.55 0.882 96.57 0.0982 17.09 

10 92.49 60.69 70.13 27.97 34.87 0.84 98.84 0.0994 16.9998 

20 93.006 54.98 71.59 27.99 31.80 0.754 99.41 0.0997 17.0241 

30 93.21 54.64 74.49 27.96 30.57 0.713 99.84 0.0999 16.9707 

DOTA 

0 98.32 99.91 75.48 28.11 39.61 0.884 99.93 0.0999 17.0718 

10 98.47 99.91 72.81 28.09 32.97 0.642 100.4 0.1001 17.0389 

20 98.53 98.64 71.32 28.06 31.18 0.535 101.5 0.1007 17.2583 

30 98.45 85.20 66.64 28.01 29.91 0.430 103.4 0.1016 17.0938 

Table 2 presents a comparative analysis of the average performance results of various image denoising and deblurring 

methods, including the proposed DWDDSAE-based model, evaluated on the NWPU VHR-10 and DOTA datasets. 

The table shows that the proposed DWDDSAE-based model outperforms its counterparts in several key metrics. 

Specifically, it achieves the highest accuracy of 96.32%, reflecting its superior ability to correctly identify and process 

image details.  

Table 2. Average comparison results for nwpu vhr-10 and dota datasets 

Methods 
Accuracy 

(%) 

Edge 

Similarity 
BRISQUE IQI 

PSNR 

(dB) 
SSIM MSE 

RMSE 

 

Execution 

Time (s) 

ACS bilateral filter 

[1] 
91.67 56.54 69.59 26.40 31.31 0.7865 102.6 0.179 18.23 

FAFM-FISM-GAN 

[2] 
90.87 78.80 72.87 27.11 35.33 0.828 101.8 0.189 19.99 

RQUNet-VAE [3] 94.44 68.32 59.82 26.90 33.45 0.814 100.6 0.101 23.48 

U-Net [5] 94.47 71.23 61.23 25.50 31.18 0.871 99.99 0.322 18.33 

WavCycleGAN [7] 93.5 75.45 67.75 25.54 30.70 0.865 103.4 0.345 20.87 

Joint Model [8] 93.35 80.65 66.67 24.93 32.54 0.855 103.9 0.114 21.40 

Conditional GAN 

[10] 
92.98 82.42 66.66 22.91 33.57 0.836 99.45 0.234 19.67 

DDPM-CR [12] 91.19 79.91 68.84 24.22 36.67 0.876 101.1 0.201 20.03 

FD-DTCWT [14] 93.56 80.32 71.71 25.98 35.04 0.844 98.89 0.115 19.41 

SHDN [15] 90.06 77.43 72.65 23.34 33.28 0.835 99.76 0.278 17.94 
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SRDN [16] 93.23 75.54 65.43 27.67 29.89 0.837 100.3 0.154 18.66 

Proposed 

DWDDSAE 
96.32 86.88 75.47 28.05 38.08 0.883 98.25 0.099 17.12 

Additionally, the DWDDSAE model excels in edge similarity, with a score of 86.88, indicating its effective 

preservation of image edges. The model also demonstrates the highest BRISQUE score of 75.47, underscoring its 

capability to maintain high image quality. In terms of IQI, the DWDDSAE model records a notable score of 28.05, 

further suggesting improved image integrity. Its PSNR of 38.08 dB is the highest among the methods tested, signifying 

exceptional performance in denoising and deblurring. The model's SSIM score of 0.883 reflects superior structural 

similarity between the processed and original images. Moreover, it exhibits lower MSE (0.099) and RMSE (17.12), 

indicating reduced reconstruction errors. Despite these strong results, the DWDDSAE model maintains a competitive 

execution time of 17.12 seconds, making it both effective and efficient. Overall, the proposed DWDDSAE-based model 

demonstrates notable advancements in performance across most evaluation metrics, proving its effectiveness in 

enhancing image quality compared to other existing methods. 

The proposed denoising and deblurring method of DWDDSAE demonstrated superior performance across a 

comprehensive set of evaluation metrics for the NWPU VHR-10 and DOTA datasets. The results of the DWDDSAE 

model are also equated against models from the literature for a broader comparison. Table II demonstrates the 

comparison results of the DWDDSAE against the literature methods at a 0% noise level. 

The results in figure 6 show that the proposed DWDDSAE has a higher accuracy of 96.32%, edge similarity of 86.88, 

BRISQUE of 75.47 and reduced MSE of 98.25. The enhanced data pre-processing and effective handling of the 

contextual information have resulted in these improvements. Effective pre-processing with denoising and filtering 

techniques likely reduced noise and artifacts, leading to cleaner images and lower MSE values. 

The results in figure 7 show that the proposed DWDDSAE has a higher IQI of 28.05 and PSNR of 38.08. The 

improvement in IQI values suggests that the DWDDSAE model has been optimized to better preserve image quality 

during operations such as enhancement, or restoration. The increase in PSNR values indicates a reduction in noise and 

distortion in the processed images compared to their original image. The improvement in IQI and PSNR values reflects 

a higher degree of fidelity and similarity between the processed and original images. 

  

Figure 6. Accuracy, Edge Similarity, BRISQUE and 

MSE 

Figure 7. IQI and PSNR 

The results in figure 8 show that the proposed DWDDSAE has a higher SSIM of 0.883 and a reduced RMSE of 0.099. 

The increase in SSIM and decrease in RMSE indicates that the processed or reconstructed image is closer in pixel 

values to the original image. Effective noise reduction techniques applied during image processing can help minimize 

pixel-wise discrepancies and improve the overall accuracy of reconstructed images. Figure 9 show the execution time 

per image is less than the existing methods. Efficient preprocessing of input data can streamline subsequent processing 
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steps and reduce computation time. This involves implementing more efficient processing and reducing computational 

complexity. 

  

Figure 8. SSIM and RMSE Figure 9. Execution time 

Thus, the proposed DWDDSAE model showed a superior performance on the set of evaluation metrics compared to 

the other existing models. For preserving the images' critical details and sharp edges, the DWDDSAE model exhibited 

remarkable accuracy in denoising and deblurring tasks. The method effectively mitigated noise and blur artifacts, 

improving visual fidelity. The Deep Wiener Deconvolution Denoising Sparse Autoencoder demonstrated efficient 

execution times per image despite its advanced capabilities. This ensures that improvements are observed not only in 

pixel-wise fidelity but also in terms of perceived image quality. 

5. Conclusions 

This paper addresses the challenges associated with detecting geospatial objects in surveillance applications, 

particularly focusing on issues like misclassification of object boundaries due to noise and blur in satellite images. Such 

complexities can significantly hinder detection accuracy, leading to increased uncertainty and bias in the detection 

model. To overcome these challenges, the DWDDSAE model has been proposed, which integrates deep learning 

techniques, specifically Wiener Deconvolution and Denoising Sparse Autoencoder (DSAE) methods. 

The performance of the DWDDSAE model was evaluated using the NWPU VHR-10 and DOTA datasets. The results 

demonstrate that the DWDDSAE model outperforms existing methods in noise and blur removal, as evidenced by its 

high accuracy of 96.32% and edge similarity score of 86.88% on the average comparison results. The model achieved 

notable improvements in PSNR (38.08 dB) and SSIM (0.883), while maintaining a low MSE of 0.099 and RMSE of 

17.12 seconds, compared to other state-of-the-art techniques. 

Despite these promising results, further research is needed to fine-tune the model for diverse datasets and those with 

unique characteristics to enhance its generalizability. Additionally, environmental conditions such as weather and 

seasonal changes can impact satellite imagery quality, which may affect model performance. Future work should focus 

on improving the robustness of the DWDDSAE model to ensure reliable performance across a broader range of 

operational scenarios. 
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