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Abstract 

Network congestion arises from factors like bandwidth misallocation and increased node density leading to issues such as reduced packet delivery 
ratios and energy efficiency, increased packet loss and delay, and diminished Quality of Service and Quality of Experience. This study highlights 
the potential of deep learning and ensemble learning for network congestion analysis, which has been less explored compared to packet-loss 
based, delay-based, hybrid-based, and machine learning approaches, offering opportunities for advancement through parameter tuning, data 
labeling, architecture simulation, and activation function experiments, despite challenges posed by the scarcity of labeled data due to the high 
costs, time, computational resources, and human effort required for labeling. In this paper, we investigate network congestion prediction using 
deep learning and observe the results individually, as well as analyze ensemble learning outcomes using majority voting, from data that we 
recorded and clustered using K-Means. We leverage deep learning models including BPNN, CNN, LSTM, and hybrid LSTM-CNN architectures 
on 12 scenarios formed out of the combination of level datasets, normalization techniques, and number of recommended clusters and the results 
reveal that ensemble methods, particularly those integrating LSTM and CNN models (LSTM-CNN), consistently outperform individual deep 
learning models, demonstrating higher accuracy and stability across diverse datasets. Besides that, it is preferably recommended to use the QoS 
level dataset and the combinations of 3 clusters due to the most consistent evaluation results across different configurations and normalization 
strategies. The ensemble learning evaluation results show consistently high performance across various metrics, with accuracy, Matthews 
Correlation Coefficient, and Cohen's Kappa values nearing 100%, indicates excellent predictive capability and agreement. Hamming Loss 
remains minimal highlighting the low misclassification rates. Notably, this study advances predictive modeling in network management, offering 
strategies to enhance network efficiency and reliability amidst escalating traffic demands for more sustainable network operations. 

Keywords:  Network Congestion; K-Means Clustering; Deep Learning; Ensemble Learning; Evaluation  

1. Introduction  

Congestion in network communication [1], akin to traffic congestion in transportation, arises from various factors such 

as accidents, maintenance, or unavoidable circumstances. Congestion in network communication commonly stems 

from bandwidth resource misallocation, where the volume of data packets exceeds available bandwidth capacity. 

Network congestion can result from increased node density, many-to-one data transmission schemes, and packet 

collisions, leading to reduced packet delivery ratios and throughput, heightened packet loss and delay, decreased energy 

efficiency, and/or connection blocking. These issues invariably diminish network Quality of Service (QoS) [2] 

performance and user Quality of Experience (QoE) [3]. 

Network control, detection, maintenance, and management are common approaches to addressing congestion across 

network layers [4]. Within the Open System Interconnection (OSI) model [5], which serves as the primary architecture 

for internet communication, the transport layer is responsible for end-to-end data delivery, ensuring sequential data 

transmission with error checking mechanisms, congestion control, and flow control. Generally, congestion control 
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(CC) operates in two scenarios: preventing congestion beforehand, known as open-loop control systems, and 

addressing congestion after it occurs, termed closed-loop control systems. Both can be achieved through two main 

mechanisms: control within the Transmission Control Protocol (TCP) [6], [7], and queue management, or Active Queue 

Management (AQM), at routers. Predictive analysis has traditionally relied on statistical methods, data mining, and 

conventional neural networks to forecast time series data, but these approaches often face limitations such as rapid 

convergence and dependency on long-term data and limited to certain cases i.e., traffic prediction [8], [9], [10], and 

malware detection [11], [12]. Network congestion itself can be examined through packet-loss based analysis; delay-

based which uses delay on Round Trip Transmission (RTT) as the primary indicator of congestion; hybrid approaches 

that combine packet loss and delay as metrics; and machine learning approaches. However, deep learning and ensemble 

learning for network congestion analysis is still underexplored and holds significant potential for development. This 

includes experimenting with parameter tuning, data labeling, architecture simulation, and activation functions. A key 

challenge in network data analysis is the scarcity of labeled data, which is often overshadowed by unlabeled and semi-

labeled data due to the high costs, time, computational resources, and human effort required for effective labeling [13]. 

Deep learning [14] and ensemble learning [15], [16], are learning algorithms in the technology realm that are now 

widely developed across various big data analyses, including urban big data, healthcare big data, astronomy, and the 

development of various Internet of Things applications, smart grid, and smart city implementations such as smart home, 

smart healthcare, smart surveillance, smart transportation, smart agriculture, and smart environment. While deep 

learning has been utilized in Network Traffic Monitoring and Analysis (NTMA) [17], its quantitative usage in CC 

analysis remains limited. Moreover, a significant challenge in network data analysis is the scarcity of labeled data, with 

unlabeled and semi-labeled data being more predominant. Labeling data requires considerable resources, time, 

computational processes, and human effort. Based on the provided background, this research leverages deep learning 

models including Backpropagation Neural Network (BPNN) [18], Convolutional Neural Network (CNN) [19], Long 

Short-Term Memory (LSTM) [20], [21], and combinations of these models i.e., CNN-LSTM [22], [23], and LSTM-

CNN architectures to conduct clustering and classification analysis to model a predictive approach to network 

congestion using deep learning and ensemble learning. Various scenarios are explored, including labeling, parameter 

tuning, architecture simulation, activation function selection, and ensemble deep learning analysis. The study will focus 

on network data transmitted via TCP and UDP protocols within the scope of Universitas Muslim Indonesia, a private 

university in the eastern Indonesia region, using hybrid metrics based on packet loss and delay congestion. Since the 

data collection is conducted primarily, the research also validates the clustering results to ensure the data used in the 

analysis process is valid and reliable. 

2. Method 

2.1. Research Flow 

Figure 1 illustrates the comprehensive pipeline followed in this study for network congestion prediction, covering data 

preparation, normalization, clustering, deep learning classification, and ensemble learning evaluation. Each stage 

contributes to refining and optimizing the data and models to achieve accurate and reliable predictions. As depicted in 

figure 1, the flow of this study is a systematic process that begins with Data Preparation including the collection; feature 

extraction; feature selection forming 2 combinations of level datasets; and categorization of data records and features. 

The data then undergoes a process of Normalization using Min-Max and MaxAbs Scalers. Following normalization, 

the data is validated using statistical methods in the Cluster Validation step i.e., the Gap Statistic, Davies-Bouldin Index 

(DBI), and Elbow method that recommend 3, 4, or 5 clusters to optimize network congestion clustering. The validated 

data is then segregated into distinct clusters using the K-Means algorithm in the Clustering step.  



 

Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1597-1613 

ISSN 2723-6471 
1599 

 

 

 

 

Figure 1. Research Flow Diagram 

Furthermore, the clustered data is subjected to Deep Learning Classification using an individual approach and ensemble 

of neural networks. Lastly, the performance of these models is evaluated in the Evaluation step to assess the 

effectiveness of the classification. Each of these steps will be explained in detail in the subsequent sections. 

2.2. Network Congestion 

Network congestion, a state where data transmission decelerates due to bandwidth resource allocation errors, can 

diminish QoS and QoE. QoS parameters include packet loss, delay, and throughput. Packet loss, indicative of lost data 

packets due to network congestion, assesses the reliability of packet transmission methods. Delay measures the time 

for a packet to travel from source to destination. Throughput, the volume of data sent over time from one network point 

to another, determines the network's reliance on forwarding packets. 

Bandwidth, the data transmission capacity over time, is crucial for determining transmission speed and efficiency. As 

per the QoS parameter assessment standard by the European Telecommunications Standards Institute (ETSI) under the 

Telecommunications and Internet Protocol Harmonization over Network (TIPHON) [24]. These standards help in 

maintaining an efficient and reliable network, ensuring that the quality of data transmission remains high despite 

potential congestion issues. 

2.3. Data Preparation 

This research employs primary data obtained from the network of the Universitas Muslim Indonesia, collected over a 

span of 10 weekdays from 06.00 AM to 07.00 PM in two weeks via Wireshark. This period captures a variety of 

network conditions and usage patterns, offering a representative snapshot of network behavior. However, a potential 

limitation is the inability to observe long-term trends and rare events, which may affect the generalizability of the 

results. Extending the data collection period in future research could address these limitations and provide a more 

comprehensive understanding of network performance over time.  

Following data aggregation, the dataset comprises 255148 records, meticulously processed to eliminate noise and 

address missing values. Ten key variables have been meticulously chosen, comprising the independent variable for 

each record. These variables include the number of packets (𝑋1𝑡), packet loss (𝑋2𝑡), throughput (𝑋3𝑡), delay (𝑋4𝑡), 

file size (𝑋5𝑡), data size (𝑋6𝑡), data byte rate (𝑋7𝑡), data bit rate (𝑋8𝑡), average packet size (𝑋9𝑡), and average packet 

rate (𝑋10𝑡). We selected ten key variables for their critical roles in understanding and predicting network congestion 

covering essential aspects of network traffic, performance, and reliability. Each variable contributes uniquely to 

capturing the dynamics of data transmission, enabling a comprehensive analysis that enhances the predictive accuracy 

and robustness of our models. By addressing various dimensions of network activity, such as volume, efficiency, and 

latency, these variables ensure a holistic approach to diagnosing and forecasting congestion, ultimately aiding in more 

effective network management and optimization strategies. In this research, we conduct the same experiment focusing 

on three QoS variables: packet loss (𝑋2𝑡), throughput (𝑋3𝑡), and delay (𝑋4𝑡). We narrow our investigation to these 

specific variables due to their critical importance in understanding network performance and congestion dynamics. By 
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focusing on these key indicators, we aim to gain deeper insights into the factors contributing to network congestion 

and enhance the predictive accuracy of our model. 

2.4. Data Normalization 

Normalization is an indispensable step in the preprocessing of data, particularly when dealing with data of high 

dimensionality. It serves to scale the input attributes, ensuring that no single attribute dominates others due to disparities 

in their respective scales. This, in turn, augments the performance of the model. In this study, we employ two 

normalization techniques: Min-Max Scaler and MaxAbs Scaler.  Min-Max Scaler is a technique transforms the 

attributes by scaling each attribute to a specified range, typically between 0 and 1 [25]. The transformation is given in 

(1). 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

𝑋𝑛𝑜𝑟𝑚 denotes the normalized attribute, while 𝑋 represents the original attribute. 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 refer to the minimum 

and maximum values of the attribute, respectively. This normalization process ensures that all attributes are scaled to 

a common range, facilitating fair comparison and interpretation across the dataset. MaxAbs Scaler is a technique scales 

each attribute by its maximum absolute value [26]. It is especially suitable for data that is centered or sparse. The 

transformation is given in (2). 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋

∣ 𝑋𝑚𝑎𝑥 ∣
 (2) 

where 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 represents the scaled attribute, 𝑋 denotes the original attribute, and |𝑋𝑚𝑎𝑥| is the maximum absolute 

value of the attribute. This process ensures that each attribute is scaled proportionally to its maximum absolute value, 

facilitating accurate comparisons across the dataset. 

2.5. Data Categorization 

In this study, the process of data categorization follows data normalization. This involves organizing the normalized 

data into significant categories using TIPHON by ETSI [27]. TIPHON, which stands for Telecommunications and 

Internet Protocol Harmonization Over Networks, is a standard aimed at harmonizing the delivery of various services 

over IP networks. It is effective in categorizing network data because it provides a structured approach to classify data 

based on predefined QoS parameters. Each data record is assigned to a category based on its attributes, with categories 

defined by patterns and distributions observed in the data. This approach ensures consistency and comparability across 

different datasets and experiments.  

The result is a categorized dataset, with each record associated with a category, ready for subsequent cluster validation 

and clustering. Utilizing TIPHON for data categorization ensures the effective organization of data into meaningful 

groups, facilitating pattern identification during clustering. Based on the level of congestion, the data was categorized 

using the inverse of QoS category in the TIPHON Standard. The TIPHON categorization process involves classifying 

data into different grades, such as Excellent, Good, Medium, and Low, based on parameters like packet loss and delay. 

Table 1 provides a detailed description of the TIPHON Standard categories used in this study. Figure 2 further 

illustrates the functions used to invert the TIPHON classification based on packet loss and delay values. 

Table 1. TIPHON Standard 

Parameter Grade QoS Category 

Packet Loss 

0% Excellent 

3% Good 

15% Medium 

25% Low 

Delay <150ms Excellent 
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Parameter Grade QoS Category 

150ms-300ms 

300ms-450ms 

Good 

Medium 

>450ms Low 

To implement the inverse categorization, the following functions are used to classify packet loss and delay values into 

their respective QoS categories. 

 

Figure 2. TIPHON Python Code 

2.6. Cluster Validation 

Cluster validation is an essential step in the data analysis pipeline, particularly in unsupervised learning tasks such as 

clustering. It involves assessing the quality of the clusters formed and determining the optimal number of clusters. In 

this study, we employ three widely-used cluster validation techniques: Gap Statistic [28], DBI [29], [30], and Elbow 

Method [31]. We use these methods because they offer robust and complementary perspectives on cluster quality, 

specifically tailored to the context of network congestion analysis. The Gap Statistic assesses the adequacy of clustering 

solutions by comparing the total intra-cluster variation across different values of (𝑘) (number of clusters) with their 

expected values under a null reference distribution. Typically, the optimal number of clusters is identified where the 

gap statistic reaches its maximum. 

The DBI serves as a metric for evaluating clustering algorithms. It quantifies the average similarity between each 

cluster and its most similar counterpart, where similarity is computed as the ratio of within-cluster distances to between-

cluster distances. A lower DBI score indicates clusters that are more distinct and less dispersed, reflecting a superior 

clustering outcome. The Elbow method offers a heuristic approach for determining the optimal number of clusters in a 

dataset. By plotting the explained variation against the number of clusters, the method identifies the "elbow" of the 

curve, indicating the point at which additional clusters provide diminishing returns in explaining the data variance, thus 

suggesting an appropriate cluster count. These validation techniques provide a quantitative measure of the quality of 

the clusters and help in determining the optimal number of clusters. The outcome of this step is a validated set of 

clusters ready for further analysis. By employing these robust validation methods, we ensure that our clustering results 

accurately reflect the complex dynamics of network congestion, thereby enhancing the reliability of subsequent 

analyses and insights drawn from the data. 

2.7. K-Means (Clustering Method) 

K-Means is a widely-used method in the field of machine learning for partitioning a dataset into distinct clusters [32], 

[33]. The algorithm operates on the principle of minimizing the within-cluster sum of squares (WCSS), which is the 

sum of the squared distances between each data point in a cluster and the centroid of that cluster. In this study, we 

apply the K-Means algorithm to the categorized and normalized dataset, forming distinct clusters that are then used in 

the subsequent deep learning classification step. The optimal number of clusters '𝑘' is determined based on the results 
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of the cluster validation methods, namely the Gap Statistic, DBI, and Elbow method [34]. These methods provide a 

quantitative measure of the quality of the clusters and help in determining the optimal number of clusters. 

2.8. Training Configuration 

The training configuration for our models encompasses the initialization of the model architecture and optimizer, 

followed by data partitioning into training, validation, and test sets. The models trained include BPNN, CNN, LSTM, 

CNN-LSTM hybrids, and LSTM-CNN hybrids. The training process is executed over 3000 epochs, where each epoch 

involves performing a training step, validating the model, and recording validation metrics. Figure 3 provides a detailed 

illustration of the overall model training and validation process, including the flow of data and performance evaluation 

across different models. 

 

Figure 3. Model Training & Validation Python Code 

This comprehensive training regimen ensures the iterative refinement of model parameters, aimed at optimizing 

performance. Upon completion of the training epochs, the models are evaluated based on test accuracy to determine 

their effectiveness and generalizability. 

2.9. Deep Learning Classification 

Following the clustering process, the next step is deep learning classification. In this study, we employ several deep 

learning models using PyTorch Framework, including BPNN, CNN, LSTM, and combinations of these models i.e., 

CNN-LSTM, and LSTM-CNN. We chose BPNN for its simplicity and effectiveness in handling non-linear 

relationships, CNN for its ability to capture spatial dependencies and patterns in the data, and LSTM for its strength in 

modeling temporal dependencies and sequence prediction. The hybrid models, CNN-LSTM and LSTM-CNN, were 

selected to leverage the advantages of both spatial and temporal feature extraction, providing a more comprehensive 

approach to network congestion prediction. 

BPNN is a type of artificial neural network that uses a supervised learning method for training. It is known for its 

efficiency in solving complex nonlinear problems. The architecture of the BPNN model used in this study is shown in 

Table 2. The learning rate for the BPNN model is set to the default value of 0.001 in PyTorch. Table 2 presents the 

structure of the model, which includes two hidden layers (FC1 and FC2), each followed by a Rectified Linear Unit 

(ReLU) activation function. The output layer (FC3) functions without an activation function, implying a classification 

task. 

Table 2. BPNN Architecture 

Layer (Fully Connected) Input Dimension Output Dimension Activation Function 

FC1 10 & 3 (QoS) 5 ReLU 

FC2 5 5 ReLU 

FC3 5 Cluster Size None 

CNNs are a type of deep learning neural networks, predominantly used for visual imagery analysis [35]. They are 

utilized in image and video recognition, recommendation systems, and natural language processing. The design of the 

CNN model employed in this research is depicted in table 3. The learning rate for the CNN model is set to the default 

value of 0.001 in PyTorch. 
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Table 3 displays the model architecture, comprising a convolutional layer (conv1) followed by a max pooling layer 

(pool), as well as two fully connected layers (FC1 and FC2). The Rectified Linear Unit (ReLU) activation function is 

applied after the convolutional layer and the initial fully connected layer. The output layer (FC2) does not utilize an 

activation function, assuming a classification task. 

Table 3. CNN Architecture 

Layer 

Type 

Layer 

Name 

Input 

Channels 

Output 

Channels 

Kernel 

Size 

Strid

e 

Paddin

g 

Activation 

Function 

Conv2d conv1 10 & 3 (QoS) 32 1 1 0 ReLU 

MaxPool2d pool - - 1 1 - - 

Linear fc1 32 128 - - - ReLU 

Linear fc2 128 Cluster Size - - - None 

LSTM [28] networks represent a variant of recurrent neural networks specifically designed to capture order dependence 

in sequence prediction tasks. This characteristic proves advantageous in time series forecasting, particularly for 

multivariate or multiple input scenarios, where traditional linear techniques may struggle to accommodate 

complexities. Refer to Table 4 for a depiction of the LSTM model architecture utilized in this research. The learning 

rate for the LSTM model is set to the default value of 0.001 in PyTorch. Table 4 displays the model's architecture, 

which includes an LSTM layer succeeded by a fully connected layer (fc). The LSTM layer internally uses a mix of 

hyperbolic tangent (tanh) and sigmoid activation functions. The output layer (fc) operates without an activation 

function, indicating a classification task. 

Table 4. LSTM Architecture 

Layer Type Layer Name Input Dimension Output Dimension Activation Function 

LSTM lstm 10 & 3 (QoS) 5 Tanh/Sigmoid 

Linear fc 5 Cluster Size None 

CNN-LSTM and LSTM-CNN: These are hybrid models of CNN and LSTM, engineered to harness the advantages of 

both models. The CNN-LSTM model capitalizes on the CNN's proficiency in handling spatial data along with LSTM's 

capacity for temporal data processing. On the other hand, the LSTM-CNN model employs LSTM for temporal data 

processing and CNN for spatial data processing. Table 5 illustrates the CNN-LSTM model architecture, comprising a 

convolutional layer (conv1), subsequent max pooling layer (pool), a fully connected layer (FC1), an LSTM layer, and 

another fully connected layer (FC2). ReLU activation function is employed following the convolutional and first fully 

connected layers. The LSTM layer utilizes a blend of hyperbolic tangent (tanh) and sigmoid activation functions 

internally [36]. The output layer (FC2) operates without an activation function, presuming a classification task. 

Table 5. CNN-LSTM Architecture 

Layer Type Layer Name Input Dimension Output Dimension Activation Function 

Conv2d conv1 10 & 3 (QoS) 32 ReLU 

MaxPool2d pool - - - 

Linear fc1 32 128 ReLU 

LSTM lstm 128 hidden_size Tanh/Sigmoid 

Linear fc2 hidden_size Cluster Size None 

Table 6 outlines the engineering of the LSTM-CNN show, which incorporates an LSTM layer taken after by a 

convolutional layer (conv1), a max pooling layer (pool), and two completely associated layers (FC1 and FC2). The 

Amended Straight Unit (ReLU) actuation work is utilized after the convolutional layer and the starting completely 

associated layer. Inside the LSTM layer, a combination of hyperbolic digression (tanh) and sigmoid enactment 



 

Journal of Applied Data Sciences 

Vol. 5, No. 4, December 2024, pp. 1597-1613 

ISSN 2723-6471 
1604 

 

 

 

capacities is utilized. The yield layer (FC2) works without an enactment work, beneath the presumption of a 

classification errand. 

Table 6. LSTM-CNN Architecture 

Layer Type Layer Name Input Dimension Output Dimension Activation Function 

LSTM lstm 10 & 3 (QoS) 32 Tanh/Sigmoid 

Conv1d conv1 32 64 ReLU 

MaxPool1d pool - - - 

Linear fc1 64 128 ReLU 

Linear fc2 128 Cluster Size None 

2.10. Ensemble Learning 

Ensemble learning is a powerful machine learning paradigm where multiple models are trained to solve the same 

problem and combined to get better results. In this study, we use an ensemble method known as Majority Voting [37]. 

In majority voting [38], each model in the ensemble votes for a class label, and the class label that gets the majority of 

votes is predicted as the final output. If the ensemble consists of models of varying performance, the majority voting 

method can lead to improved predictive accuracy over individual models. The principle behind majority voting is that 

it leverages the wisdom of the crowd. While individual models may have weaknesses, when many models are 

combined, their strengths can collectively outweigh their weaknesses, leading to a more robust and accurate prediction. 

The ensemble of models in this study includes the BPNN, CNN, LSTM, and combinations of these models such as 

CNN-LSTM and LSTM-CNN. Majority voting was chosen for its simplicity and effectiveness. It combines predictions 

from multiple models, enhancing overall accuracy and robustness by reducing individual model variance. This method 

is particularly suitable for network congestion prediction, where diverse models capture different data patterns, leading 

to more reliable results. 

2.11. Evaluation Metric 

In our study, we focus on utilizing validation loss, validation accuracy, and test accuracy as the primary evaluation 

metrics for deep learning models. By consistently monitoring validation loss and accuracy throughout training, we 

offer transparency regarding the model's convergence and generalization capabilities. Additionally, test accuracy serves 

as the ultimate measure of the model's ability to generalize to new, unseen data. For ensemble evaluation, we expand 

the assessment to include metrics like Matthews Correlation Coefficient (MCC) [39], Cohen's Kappa [40], and 

Hamming Loss [41]. Validation loss is used to measure the model's ability to generalize beyond the training data, 

ensuring it is not overfitting. Accuracy provides a straightforward measure of the overall correctness of the model's 

predictions. MCC is chosen for its ability to handle imbalanced datasets and provide a balanced measure that considers 

true and false positives and negatives. Cohen's Kappa is included to measure the agreement between predicted and 

actual labels, adjusting for the possibility of random chance. Hamming Loss is used to quantify the fraction of incorrect 

labels, which is particularly useful in multi-class and multi-label classification problems. These metrics offer nuanced 

evaluations, particularly beneficial for ensemble approaches and datasets with complex class distributions, and provide 

a comprehensive understanding of the ensemble's predictive performance and its robustness in predicting network 

congestion across diverse scenarios. 

3. Results and Discussion 

The results are derived from the various stages of the research flow, including data preparation, normalization, 

categorization, cluster validation, clustering, deep learning classification, and ensemble learning. Each of these stages 

contributes to the final outcome, providing insights into the effectiveness of the proposed methodology. Utilizing 

Wireshark and the Packet Capture (PCAP) API, network traffic was captured and stored in a PCAP file. As depicted 

in figure 4, a Python script was employed to transform these files into Excel, yielding key metrics such as packet 

number, file size, data size, capture duration, data byte rate, data bit rate, average packet size, average packet rate, 
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throughput, packet loss, delays, packet loss percentage, and delay in milliseconds. The total recorded data amounted to 

255,148 records. 

 

Figure 4. Correlation Matrix of Features 

In the pursuit of a comprehensive understanding of the network parameters, we have undertaken an extensive data 

collection and analysis process. These parameters, which include metrics such as the number of packets and delays 

(measured in milliseconds), provide critical insights into the operational efficiency of network systems. To encapsulate 

these elements in a cohesive manner, we introduce a correlation matrix as in Figure 4 that outlines the interrelationships 

between various network parameters. Each cell within this matrix is color-coded, representing correlation coefficient 

values that range from -1 to 1. This visual representation offers an intuitive understanding of the interactions between 

each parameter and the intensity of their correlations. In the ensuing sections, we will explore these interactions in 

greater depth, discussing their implications for network performance and potential optimization strategies. The insights 

derived from this matrix will serve as a foundation for targeted interventions aimed at enhancing network system 

efficiency and reliability. Following this, we present a statistical summary of these network parameters in the form of 

a table. Table 7 presents a comprehensive statistical summary of the network parameters used in this research. Each 

row represents a different statistical measure (count, mean, standard deviation, minimum, 25th percentile, median, 75th 

percentile, maximum) for each of the network parameters. This tabular representation allows for a more granular 

understanding of the data set, complementing the insights gleaned from the Correlation Matrix (figure 2). It provides 

a tangible representation of the key metrics, thereby facilitating a deeper understanding of the network's operational 

efficacy. The subsequent sections will delve into the implications of these statistics for network performance and the 

potential strategies for optimization. 

Table 7. Descriptive Dataset 

 Mean Standard deviation Min Max 

Number of packets 1.26E+04 4.16E+03 11 5.04E+04 

File size (bytes) 9.69E+06 4.59E+06 1.54E+03 4.49E+07 
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Data size (bytes) 9.27E+06 4.47E+06 840 4.33E+07 

Capture duration (seconds) 0.065277778 0.11 0.001 1 

Data byte rate (bytes/sec) 9.92E+06 4.84E+06 921 4.33E+07 

Data bit rate (bits/sec) 7.94E+07 3.87E+07 7.37E+03 3.46E+08 

Throughput 0.07 0.53 0.01 114 

Packet Loss 1.39E+03 1.23E+03 0 1.23E+04 

Packet Loss (%) 11.08 9.17 0 100 

Delay (ms) 179 3.30E+03 0 6.62E+05 

3.1. Cluster Validation 

Table 8 elucidates the outcomes of cluster validation, employing diverse methods and metrics. Each row delineates a 

distinct method (Min-Max 10 Level, Min-Max 3 QoS Level, MaxAbs 10 Level, MaxAbs 3 QoS Level), while each 

column signifies a different metric (DBI for 𝑘 = 3, 𝑘 = 4, and 𝑘 = 5, Gap Optimal, Elbow Optimal). 

Table 8. DBI Cluster Validation 

 DBI 𝑘 = 3 DBI k=4 DBI k=5 Gap Optimal Elbow Optimal 

Min-Max 10 Level 0.47 0.51 0.54 5 3 

Min-Max 3 QoS Level 0.45 0.49 0.39 5 4 

MaxAbs 10 Level 0.47 0.51 0.54 5 3 

MaxAbs 3 QoS Level 0.45 0.49 0.39 4 4 

The DBI method indicates that the optimal cluster number for a 10-level dataset is 3 clusters, and for the QoS level, it 

is 5 clusters, aligning with the elbow method's results. However, the statistical gap method presents different results, 

suggesting that the optimal cluster number for 10 levels is 5 clusters. Interestingly, a discrepancy is observed between 

min-max and maxAbs normalization at the QoS level. The Min-Max QoS Level exhibits optimal clusters at 5 clusters, 

whereas the MaxAbs QoS Level presents an optimal cluster of 4 clusters. This highlights the nuanced differences that 

can emerge depending on the normalization method employed. 

3.2. K-Means Analysis 

After conducting several analyzes on 6 cluster combinations (3, 4, and 5 clusters against Normalized Min-Max & 

MaxAbs, at 10 Level features dataset), all combinations of the 10 Level dataset have fair data distribution and suitability 

for the clusters center when comparing "Number of Packet" with "File Size", "Data Size", "Data byte rate" as shown 

in the figure 5, which represents the above statement and all 6 cluster combinations. 

 

Figure 5. 10 Level Features K-Means Clustering: Packet vs (a) File Size (3 Clusters, Min-Max), (b) Data Byte Rate 

(4 Clusters, MaxAbs), (c) Data Size (5 Clusters, Min-Max) 

 

(a)     (b)                 (c) 
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In the case of other feature combinations, there exists a data distribution that, while still exhibiting a pattern, does not 

align with the central cluster. Additionally, there is a data distribution that lacks any discernible pattern. These 

distributions are depicted in figure 6. 

 

Figure 6. 10 Level Features K-Means Clustering: (a) File Size vs Packet Loss (5 Clusters, Min-Max), (b) Avg Packet 

Size vs Packet Loss (4 Clusters, MaxAbs) 

In the other six combinations (3, 4, and 5 clusters for Normalized Min-Max & MaxAbs, on 3 QoS Level datasets), it 

was observed that all combinations of QoS Level datasets exhibit a patterned data distribution and align with the central 

cluster only when packet loss is juxtaposed with throughput. However, there is a patterned data distribution that does 

not coincide with the central cluster when comparing packet loss with delay. Furthermore, there is an absence of any 

discernible pattern when examining the combination of Delay and Throughput features. These observations are 

visualized in figure 7 representing all 6 QoS Level combinations. Based on the aforementioned observations, it can be 

inferred that the clustering outcomes for the 10 Level dataset, for both Min-Max and MaxAbs and across all cluster 

combinations, indicate that K-Means attempts to cluster the dataset based on the Number of Packets and features 

associated with packet size. Conversely, the clustering outcomes for the 3 Level QoS dataset, for both Min-Max and 

MaxAbs and across all cluster combinations, reveal that K-Means aims to cluster the data based on Packet Loss.  

 

Figure 7. 3 QoS Level Features K-Means Clustering: (a) Throughput vs Packet (3 Clusters, Min-Max), (b) Packet 

Loss vs Delay (4 Clusters, MaxAbs), (c) Throughput vs Delay (5 Clusters, Min-Max) 

     

  (a)           (b) 

 

(a)     (b)    (c) 
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3.3. Classification Analysis 

   
(a) (b) (c) 

  

(d) (e) 

Figure 8. Validation Loss of (a) BPNN, (b) CNN, (c) LSTM, (d) CNN-LSTM, (e) LSTM-CNN models 

In this study, the following training configurations are employed: (1) The dataset is partitioned into three subsets for 

the training process: the training set comprises 60% of the total data, and the validation set makes up 20%. (2) For the 

model testing phase, 20% of the data is utilized as the test set. (3) Every algorithm employs Adam Optimization with 

a learning rate of 0.0001. (4) This study documents validation loss and validation accuracy over a span of 3000 epochs. 

Figure 8 presents the validation loss metric. The LSTM-CNN algorithm generates models that exhibit a high degree of 

effectiveness and a very low level of loss stability across all data combinations. In contrast, it can be observed that 

BPNN, CNN, and LSTM yield unstable losses and relatively high final losses.  

The data combination that demonstrates the highest level of stability and the best final loss across all algorithms is 

represented by the 10 Level model with 3 Clusters, which is normalized by MaxAbs. On the other hand, the 

combinations of QoS Level with 5 Clusters Min-Max and MaxAbs, as well as 4 Clusters with MaxAbs, particularly in 

the BPNN and CNN algorithms, display the opposite characteristics. 

   

(a) (b) (c) 
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(d) (e) 

Figure 9. Validation Accuracy of (a) BPNN, (b) CNN, (c) LSTM, (d) CNN-LSTM, (e) LSTM-CNN Models 

As depicted in figure 9, similar to the validation loss metric, the models trained in this study demonstrate that the 

LSTM-CNN algorithm generates models that exhibit the highest level of accuracy stability among the tested deep 

learning algorithms. Conversely, the models produced by the BPNN, CNN, and LSTM algorithms display accuracy 

instability during the training process. An intriguing observation is made with the BPNN algorithm, in the 10 Level 

model with 4 Clusters normalized by MaxAbs. This combination shows the poorest performance in terms of loss and 

accuracy, but it does not appear as deficient when compared to other algorithms. Upon completion of the training 

process for all algorithm and data combinations, the accuracy results are presented in table 9 using the prepared test 

set. It is revealed that the CNN-LSTM and LSTM-CNN algorithms achieve superior performance compared to the 

other algorithms. 

Table 9. Comparison of Models Across Different Levels and QoS Levels 

 BPNN CNN LSTM CNN-LSTM LSTM-CNN 

3k Min-Max 10 Level 0.98 0.97 0.99 1.00 1.00 

4k Min-Max 10 Level 0.99 0.98 0.96 1.00 1.00 

5k Min-Max 10 Level 0.97 0.97 0.96 1.00 1.00 

3k MaxAbs 10 Level 0.97 0.99 0.98 1.00 1.00 

4k MaxAbs 10 Level 0.99 0.99 0.93 1.00 1.00 

5k MaxAbs 10 Level 0.94 0.97 0.93 1.00 1.00 

3k Min-Max 3 QoS Level 1.00 0.97 0.99 1.00 1.00 

4k Min-Max 3 QoS Level 0.94 0.95 0.99 1.00 1.00 

5k Min-Max 3 QoS Level 0.94 0.92 0.95 1.00 1.00 

3k MaxAbs 3 QoS Level 0.96 0.98 0.99 1.00 1.00 

4k MaxAbs 3 QoS Level 0.94 0.94 1.00 1.00 1.00 

5k MaxAbs 3 QoS Level 0.86 0.92 0.99 0.95 1.00 

After all models have been trained, the models will be combined based on each dataset combination and produce 12 

ensemble models with final results determined using the majority voting method which has been evaluated in table 10. 

Table 10. Comparison of Metrics Across Different Levels and QoS Levels 

 Accuracy MCC Cohen’s Kappa Hamming Loss 

3k Min-Max 10 Level 1.00 0.99 0.99 0.00 

4k Min-Max 10 Level 1.00 1.00 1.00 0.00 

5k Min-Max 10 Level 0.99 0.99 0.99 0.01 
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3k MaxAbs 10 Level 1.00 1.00 1.00 0.00 

4k MaxAbs 10 Level 0.99 0.99 0.99 0.01 

5k MaxAbs 10 Level 1.00 1.00 1.00 0.00 

3k Min-Max 3 QoS Level 1.00 1.00 1.00 0.00 

4k Min-Max 3 QoS Level 1.00 1.00 1.00 0.00 

5k Min-Max 3 QoS Level 1.00 0.99 0.99 0.00 

3k MaxAbs 3 QoS Level 1.00 1.00 1.00 0.00 

4k MaxAbs 3 QoS Level 1.00 1.00 1.00 0.00 

5k MaxAbs 3 QoS Level 0.98 0.98 0.98 0.02 

Table 10 presents a comparative analysis of various metrics, including Accuracy, MCC, Cohen's Kappa, and Hamming 

Loss, across different configurations involving 3𝑘, 4𝑘, and 5𝑘 Min-Max and MaxAbs normalization levels, as well as 

corresponding QoS levels. The results demonstrate consistently high performance across all metrics, with Accuracy, 

MCC, and Cohen's Kappa values nearing or at 1.00, indicating excellent 100% predictive capability and agreement for 

most configurations. Notably, the result of Hamming Loss remains minimal at 0.00, reflecting nearly misclassification 

rates possibility. The slight variations observed in the 5𝑘 Min-Max and 5𝑘 MaxAbs QoS levels suggest marginally 

reduced performance in these specific scenarios. Overall, the metrics indicate robust model performance across various 

levels and normalization strategies. It can also be seen that all combinations of highly recommended to using the QoS 

level dataset in term of features, and 3 clusters have the most consistent evaluation results from all experiments in terms 

of the number of clusters. 

4. Conclusion 

This study leveraged deep learning and ensemble learning to predict network congestion effectively. Beginning with 

meticulous data collection and preprocessing, it delved into correlation analysis, exploratory data analysis, cluster 

validation, and classification. Findings revealed nuanced insights into network parameter relationships and optimal 

clustering strategies. K-Means analysis highlighted patterns, with clustering focusing on key features like packet 

numbers and losses. Classification analysis showcased superior stability and accuracy of LSTM-CNN. Ensemble 

learning further enhanced predictions, yielding twelve robust models with high accuracy across diverse dataset 

configurations. Furthermore, it is preferably recommended to use the QoS level dataset and the combinations of 3 

clusters due to the most consistent evaluation results compared to other combination experiments. In essence, this 

research demonstrates the power of deep learning and ensemble methods in forecasting network congestion, offering 

valuable strategies for enhancing network efficiency and reliability in the face of escalating traffic demands. 
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