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Abstract 

This research develops a Smart Egg Incubator that integrates IoT technology, fuzzy logic, and the YOLOv9-S Deep Learning model to enhance 
the efficiency and accuracy of hatching chicken eggs. The system automatically regulates temperature and humidity, maintaining temperature 
between 34.3°C and 39.5°C and humidity between 57% and 68% with a fuzzy logic success rate of 90%. The YOLOv9-S model enables real-
time chick detection and classification with mAP50 of 93.7% and mAP50:95 of 71.3%. Efficiency improvements are measured through the 
success rate of fuzzy logic and improved detection and classification accuracy. This research also uses CNN for high-accuracy object 
classification, with model optimization performed using SGD to accelerate convergence and improve accuracy. The results indicate significant 
potential in improving the egg hatching process. The high accuracy and robustness of the YOLOv9-S model enhance real-time monitoring and 
decision-making in hatcheries, leading to higher hatching success rates, reduced chick mortality, and increased operational efficiency. Future 
designs can leverage these technologies to create more intelligent, automated systems requiring minimal human intervention, enhancing 
productivity and scalability. Additionally, IoT and deep learning integration can extend to other poultry farming areas, such as broiler production 
and disease monitoring, providing a comprehensive approach to farm management. Future research could focus on integrating the YOLOv10 
model for even higher accuracy and efficiency, exploring diverse data augmentation techniques, optimizing fuzzy logic algorithms, and 
integrating additional sensors like CO2 and advanced humidity sensors to improve environmental regulation. These advancements would benefit 
not only smart incubator applications but also broader poultry farming areas. 
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1. Introduction  

Hatching machines or egg incubators have an important role in the world of livestock and poultry breeding, both for 

food production needs and for poultry enthusiasts [1], [2]. They are becoming increasingly popular due to their 

advantages over natural hatching methods that allow for significant improvements in the efficiency and effectiveness 

of the hatching process [3]. Egg Incubator have evolved from manual tools to semi-automatic machines and then to 

fully automatic versions [4], [5]. These developments not only speed up the breeding process of poultry, but also make 

it more effective and efficient [4], [6], [7]. 

The application of egg incubator in various scales of livestock enterprises shows an important shift from traditional 

hatching methods [8]. By integrating into Internet of Things (IoT) technology, modern hatcheries offer advantages for 

remote hatchery monitoring and management [9], [10]. IoT integration allows farmers to accurately regulate and 

monitor the internal conditions of the hatchery such as temperature and humidity through an app on a smartphone or 

other smart device [11], [12]. The benefits of using a hatching machine are its ability to increase the percentage of 

hatching success up to 80-90%, freeing poultry mothers from incubating duties so that they can immediately return to 

reproduction [13]. Egg Incubator overcome many other limitations of natural hatching such as the inability of the 

mother to incubate all the eggs or the risk of chicks dying due to trampling [14]. 

Addressing the previously identified problems, the proposed problem-solving approach for the development of the 

Smart Egg Incubator is the integration of IoT technology with Deep Learning and machine learning models. The 

implementation of an adaptive control system using fuzzy logic automatically adjusts the temperature and humidity in 
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the incubator based on the collected sensor data to ensure optimal hatching environment conditions. The development 

and integration of Deep Learning YOLOv9 and CNN models aims to improve accuracy in real-time detection and 

monitoring of the hatching process, with the application of SGD as an optimizer for accuracy improvement. In addition, 

data augmentation techniques will be used to enrich the dataset, improve the model's ability to recognize more diverse 

patterns and overcome variations in image data. 

The combination of IoT with machine learning and Deep Learning techniques will be developed to create a Smart Egg 

Incubator that is not only automatic in regulating the hatching environment, but also intelligent in monitoring and 

optimizing the hatching process. This approach is expected to increase the efficiency and effectiveness of egg hatching 

and provide solutions to the limitations that exist in previous egg hatching systems [15]. The data augmentation 

techniques used include rotation, rescaling, translation, and lighting variation to ensure the model can cope with various 

image conditions that may occur during the hatching process [16], [17]. The integration of these technologies not only 

ensures optimal conditions for the eggs but also enables detection and classification of hatched chicks with high 

accuracy, increasing the overall success of egg incubator. 

Previous research used ESP32 DHT22 Sensor in building an egg incubator using IoT [18]. Subsequent research 

developed an automatic egg hatcher but faced issues when the machine failed without electricity [19]. Other researchers 

focused on optimal temperature using specific light bulbs as heating sources [20], rotating egg trays with DC motors 

without considering monitoring [21], and implementing solar panels without incubator status monitoring [22]. Further 

studies equipped egg incubators with LoRa networks for temperature management but lacked automatic egg rotation 

[23]. Research has also developed IoT-based egg incubators with subsystems such as embedded systems, web 

applications, and Telegram [12]. Other studies used DHT11 sensors and manual cameras for monitoring without Deep 

Learning integration [24]. 

To overcome the limitations of traditional hatching methods, such as the inability of the mother to incubate all the eggs 

or the risk of chicks dying due to trampling, the Smart Egg Incubator leverages IoT and Deep Learning technologies. 

IoT integration allows for precise control and monitoring of the hatching environment through remote access, while 

Deep Learning models enhance the accuracy of detecting and classifying hatched chicks in real-time, thereby increasing 

the overall success rate of the hatching process. The development of a Smart Egg Incubator is proposed by integrating 

IoT, Deep Learning, and machine learning technologies. An adaptive control system using fuzzy logic will 

automatically adjust temperature and humidity based on sensor data, ensuring optimal conditions for egg hatching. 

Deep Learning models YOLOv9 and CNN will be developed to improve detection accuracy and real-time monitoring 

of the hatching process. The integration of IoT with machine learning and Deep Learning techniques will create a Smart 

Egg Incubator that automatically and intelligently manages the environment and monitors the hatching process, 

expected to improve efficiency and effectiveness and provide solutions to previous limitations. 

The novelty in developing the Hybrid Deep Learning - Machine Learning and IoT Model for Smart Egg Incubator lies 

in integrating innovative models, including fuzzy logic with IoT for adaptive temperature and humidity regulation 

according to the eggs needs during hatching. The YOLOv9 Deep Learning model combined with CNN [25] and 

optimized with Stochastic Gradient Descent (SGD) enables real-time monitoring and counting of hatched chicks with 

high accuracy [26]. Additional developments include an automatic egg container rotation system for temperature 

equalization and integrating visual technology and data analysis of the incubator environment to ensure optimal 

conditions. This hybrid model introduces advanced egg hatching methods and significantly contributes to the digital 

economy in poultry farming. 

2. Research Methodology 

The development stages of the Smart Egg Incubator will be carried out by integrating IoT and Machine learning, and 

creating a new hybrid model by developing a Deep Learning model approach to improve the accuracy of detecting 

chick objects. The proposed model development plan in this research can be found in figure 1. 
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Figure 1. Flow of Model Development 

In figure 1, the model development flow can explain the detailed methodological process for developing a Smart Egg 

Incubator that utilizes the latest technologies in Deep Learning, Machine learning, and IoT. The detailed steps within 

each stage of the methodology include:  

2.1. Comprehensive Model Development Process 

Sensors in the incubator collected real-time temperature and humidity data. The training dataset included video 

recordings from YouTube, images from Kaggle and GitHub, and synthetic data generated using GANs to ensure 

diversity. Collected images were sorted, cropped, and resized to 640x640 pixels. Data augmentation techniques such 

as rotation, rescaling, translation, lighting variation, HSV saturation, and value augmentation were applied to increase 

variation and prevent overfitting. The YOLOv9-S model was trained using the PyTorch framework with a batch size 

of 16, an initial learning rate of 0.01, and 35 epochs. MixUp and Mosaic Augmentation techniques were used to enhance 

robustness. The dataset was split into 70% training data, 20% validation data, and 10% test data for thorough evaluation. 

The SGD optimizer with a weight decay of 0.00005 adjusted model weights for fast convergence. Throughout training, 

loss values, precision, and recall metrics were monitored to fine-tune parameters, reducing overfitting and improving 

accuracy. This integrated approach ensured the development of an efficient and accurate Smart Egg Incubator system, 

enhancing its capability to monitor and regulate the hatching environment effectively. 

2.2. Model Integration and Testing 

The trained model is integrated with CNN for object classification and tested using real-time data from the incubator. 

Performance metrics such as mAP50 and mAP50:95 is used to evaluate the model's accuracy in detecting and 

classifying hatched chicks. The use of the Generative Adversarial Networks (GAN) model aims to create a synthetic 

dataset that enriches the training data due to the difficulty of obtaining a large number of chick image datasets [27], 

[28], [29]. This is important in helping the model to learn from a wider variety of images, enabling more accurate object 

detection. The use of GAN for dataset augmentation could use more details on their role and effectiveness in enriching 

training data. GAN are used to generate synthetic data that closely resembles real-world images, thus increasing the 

diversity of the training dataset. This augmentation technique is very effective in overcoming the limitations of small 

datasets by providing a larger and more varied set of training examples. By generating realistic images, GAN helps 

improve the robustness and generalization ability of deep learning models. The synthetic data generated by GAN 

ensures that the model is exposed to a wide range of variations, which is crucial for accurate object detection and 

classification in real-world scenarios. 

Furthermore, the original image dataset augmentation  technique involving image manipulation was used to increase 

the number of datasets for training [30], [31]. Augmentation is important to avoid overfitting and make the model more 
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adaptable to small differences in new data in field trials. The division of the datasets into training, validation, and 

testing makes it possible to hone the model on the training data and align it with the validation data, as well as test its 

ability to generalize on the testing dataset. This is an optimization in ensuring that the model not only learns the training 

data but also understands the features essential for effective object detection. 

The core of this research contribution is the development of a modified YOLO V9 model including more specific 

definitions of functions, losses, and activations [32], [33]. The training and validation of this model forms the basis for 

the automation of object detection, namely the detection of hatched chicks. After training the model is tested using a 

dataset set aside to ensure that the finalized model delivers high performance, fast real-time object detection and high 

accuracy. The model is then integrated with CNN for object classification [34] and optimized with SGD which is 

known for its efficiency in adjusting model weights to achieve fast convergence, so the entire system model will be 

tested to improve object detection accuracy [35]. The developed model will be tested using the objects of chicks, eggs, 

and newly hatched eggs using cameras attached to IoT devices in real-time. 

YOLO V9 released in February 2024 introduces Programmable Gradient Information (PGI) to address information 

loss in neural networks by providing reliable gradients for weight updates [36], [37]. These innovations include a new 

network architecture Generalized Efficient Layer Aggregation Network (GELAN) that improves parameter utilization 

and achieves better results than previous versions of YOLO [38]. The following figure 2 describes the Pan Feature 

Maps of GELAN and YOLOv9: 

 

Figure 2. Pan Feature Maps of GELAN and YOLOv9 (GELAN + PGI) 

GELAN is an architectural enhancement that enables better parameter usage and computational efficiency [39]. It 

combines the capabilities of CSPNet [40] to streamline gradients efficiently with ELAN architecture which is speed-

oriented [41]. In this section, we present a comparison of the CSPNet, ELAN, and GELAN architectures, along with 

the development of the YOLOv9-S architecture. Figure 3 illustrates the comparison between the CSPNet, ELAN, and 

GELAN architectures, providing insights into the performance and structural differences among these three 

architectures and highlighting their respective advantages and limitations. Additionally, figure 4 demonstrates the 

development of the YOLOv9-S architecture, showcasing the progressive improvements and innovations incorporated 

into the YOLOv9-S design, leading to enhanced performance and accuracy. 

 

Figure 3. Comparison of CSPNet, ELAN, and GELAN architectures [38] 



Journal of Applied Data Sciences 

Vol. 5, No. 3, September 2024, pp. 1052-1068 

ISSN 2723-6471 

1056 

 

 

 

 

Figure 4. YOLOv9-S Architecture Development 

Two important components of the Generalized Efficient Layer Aggregation Network (GELAN) in YOLOv9-S are 

SPPELAN and RepNCSPELAN4. SPPELAN incorporates Spatial Pyramid Pooling in the ELAN structure, starting 

with a convolution layer to adjust the channel dimensions, followed by spatial pooling to capture multi-scale 

information, and then consolidated through another convolution layer for detailed feature extraction. 

RepNCSPELAN4, an advanced version of CSP-ELAN, simplifies feature extraction by splitting the input from the 

initial convolution layer into two paths, processed through RepNCSP and convolution layers, then recombined. This 

dual-path strategy improves gradient flow, feature reuse, learning efficiency, and model inference speed. 

YOLO is one of the most efficient and fast object detection architectures [42], capable of detecting objects in a single-

stage compared to two-stage approaches such as R-CNN [43]. Figure 5 depicts the architecture of the object detector, 

which is divided into two stages: one-stage and two-stage detectors. This architecture consists of five main components: 

input, backbone, neck, dense prediction, and sparse prediction. The single-stage detector covers the process from input 

to dense prediction, while the two-stage detector proceeds from dense prediction to sparse prediction to improve object 

detection accuracy. 

 

Figure 5. Object detection [44] 

Reasons to choose YOLOv9-S [38] is due to the significant improvements it brings over previous versions, such as the 

YOLOv7 [45] and YOLOv8 [46] . The YOLOv9-S offers high speed that enables real-time image processing suitable 

for applications such as incubator monitoring. With improvements to the architecture and algorithms this model is 

capable of detecting objects with high accuracy. In addition, its efficiency in using computing resources makes it 

possible to run on more limited hardware. Figure 6 shows the comparison of real-time object detectors on the MS 

COCO dataset. 
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Figure 6. Comparison of real-time object detectors on the MS COCO dataset [38] 

YOLOv9-S offers several key improvements over its predecessors, including enhanced detection accuracy and speed. 

One significant enhancement is the incorporation of the CSPDarknet53 backbone, which improves feature extraction 

and reduces computational complexity. Additionally, YOLOv9-S employs a new anchor-free detection head, which 

simplifies the detection process and reduces the number of hyperparameters that need tuning. These improvements 

result in higher mAP (mean Average Precision) scores and faster inference times. However, these enhancements come 

with trade-offs, such as increased memory usage due to the deeper network architecture and the need for more extensive 

training data to achieve optimal performance.  

In this study, the YOLOv9-S architecture was chosen over more complex variants such as YOLOv9-C and YOLOv9-

E due to several considerations. YOLOv9-S requires lower computation, uses fewer parameters, and is more efficient 

in resource usage, important for hardware with limited capacity. In addition, the simpler architecture allows the 

YOLOv9-S to process images very quickly, ensuring the monitoring system can operate in real-time without significant 

lag. Despite being simpler, the YOLOv9-S is powerful enough to detect hatched chicks with sufficient accuracy, 

making it a practical choice over more complex variant. Figure 6 shows the performance comparison of various real-

time object detectors on the MS COCO dataset and table 1 presents a performance comparison of various YOLOv9-S 

architecture models on the MS COCO dataset. 

Table 1. Performance comparison of YOLOv9-S architecture on MS COCO dataset 

Model Test Size APval P50val AP75val Param. FLOPs 

YOLOv9-T 640 38.3% 53.1% 41.3% 2.0M 7.7G 

YOLOv9-S 640 46.8% 63.4% 50.7% 7.1M 26.4G 

YOLOv9-M 640 51.4% 68.1% 56.1% 20.0M 76.3G 

YOLOv9-C 640 53.0% 70.2% 57.8% 25.3M 102.1G 

YOLOv9-E 640 55.6% 72.8% 60.6% 57.3M 189.0G 

The table includes the models YOLOv9-T, YOLOv9-S, YOLOv9-M, YOLOv9-C, and YOLOv9-E, with test sizes set 

at 640. The performance metrics include APval (Average Precision), P50val (Precision at 50%), and AP75val (Average 

Precision at 75%), as well as the number of parameters and FLOPs (Floating Point Operations). YOLOv9-E achieves 

the highest performance across all metrics with an APval of 55.6%, P50val of 72.8%, and AP75val of 60.6%, but it 

also has the highest number of parameters (57.3M) and FLOPs (189.0G), indicating a trade-off between accuracy and 

computational complexity. The YOLOv9-S model, known for its high accuracy and speed in object detection, 

significantly enhances the real-time monitoring capabilities of the Smart Egg Incubator. This allows farmers to 

efficiently manage and monitor the hatching process remotely, reducing the need for constant manual supervision. The 

model's ability to accurately detect and classify hatched chicks in real-time ensures higher hatching success rates and 

reduces chick mortality. Additionally, the integration of YOLOv9-S with IoT technology enables proactive adjustments 

to the hatching environment, leading to optimal conditions for egg incubation. These technical advancements provide 
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tangible benefits to users by increasing efficiency, improving hatching success rates, and offering greater convenience 

and control over the hatching process. 

In the IoT layer for egg incubators, data is collected from sensors including temperature and humidity. Sensors attached 

to the incubator collect real-time data on conditions such as temperature and humidity, which play an important role in 

creating optimal hatching room conditions. The application of machine learning fuzzy logic algorithms on this sensor 

data for temperature and humidity adjustments adaptively and automatically according to the specific needs of the eggs 

to be hatched [47]. The hardware design of the Smart Egg Incubator can be seen in figure 7, and figure 8 shows the 

physical design of the Smart Egg Incubator: 

 

Figure 7. Smart Egg Incubator Tool Set 

 

Figure 8. Design of the Smart Egg Incubator to be developed 

 

The Smart Egg Incubator is built using several key components: the Raspberry Pi3 Model B microcontroller, which 

functions as the main processing unit; a webcam for monitoring the hatching process and assessing the quality of 

hatched eggs; and an egg incubator that serves as the primary hatching environment. Capacitors (33 PF) store electrical 

charges, while the DHT11 sensor monitors temperature and humidity, and the PIR sensor detects movement within the 

incubator, sending notifications to the user's smartphone via IoT technology when eggs hatch. An LCD display shows 

the incubator's temperature, and LED indicators signal when temperatures are too high, normal, or too low. A servo 

motor rotates the eggs for even exposure to light, and an incandescent lamp provides heat, turning on and off 

automatically to maintain optimal temperature. Additionally, a fan activates automatically to cool the incubator if the 

temperature exceeds the normal range. 

3.  Results and Discussions 

3.1. IoT Implementation on Smart Egg Incubator 

Figure 9 shows the display of the Smart Egg Incubator. From the test results that have been conducted, this incubator 

functions as expected and all components of this incubator are feasible to implement. The compact design and the use 

of advanced technology ensure that it can be effectively used in the egg hatching process with better control over 

temperature and humidity. 
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Figure 9. Smart Egg Incubator display 

The benchmark for the success of the Smart Egg Incubator UHTP prototype development is seen from the success of 

the prototype in carrying out the egg hatching process and the success of the tool to maintain temperature and humidity. 

From the results of monitoring and evaluation of the Smart Egg Incubator, the temperature threshold data is 34.3 ° C 

to 39.5 ° C and humidity 57- 67% as shown in table 2. 

Table 2. Temperature and Humidity Threshold Testing 

Number of Testing Temperature Humidity Description 

1 34.3 57 Lights On, Fan Off 

2 35.0 58 Lights On, Fan Off 

3 36.0 58 Lights On, Fan Off 

4 39.5 68 Lights Off, Fan On 

5 37.2 63 Lights On, Fan Off 

6 36.8 61 Lights On, Fan Off 

7 39.3 67 Lights Off, Fan On 

The results of testing the temperature and humidity thresholds of the Smart Egg Incubator in Table 2 how that at 

temperatures below the normal incubation temperature limit of 37.7 ° C the device will turn on the lights and turn off 

the fan to increase the temperature to the normal temperature limit of 37.7 ° C to 38.8 ° C. If the incubator has reached 

the maximum temperature of the normal temperature of 38.8 ° C then the incubator will turn off the lights and turn on 

the fan to the minimum limit of normal temperature. To regulate the temperature, it is necessary to control the lights 

periodically and for humidity, it is necessary to fill in enough water in the water tub until the temperature and humidity 

are appropriate. On the 18th day the signs of eggs began to appear with small cracks in the eggs and to be able to hatch 

completely it takes a day. From a trial sample of 20 eggs, in 19 days 3 eggs were successfully hatched. Figure 10 shows 

the conditions inside the incubator chamber. 

 

Figure 10. Conditions in the Incubator Room 
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The following graph shows the results of the temperature and humidity threshold testing using fuzzy logic. This graph 

illustrates the changes in temperature and humidity over seven tests, with additional information about the condition 

of the lights and fans during the test. Figure 11 shows a graph of the test results using fuzzy logic. 

 

 

Figure 11. Graph of Test Results Using Fuzzy Logic 

The application of fuzzy logic to the incubator system shows positive results in adaptively regulating temperature and 

humidity based on collected sensor data. Using fuzzy logic, the system can automatically adjust the environmental 

conditions of the incubator to ensure the temperature and humidity remain within the optimal range for hatching eggs. 

The test results show that the system successfully maintains the temperature between 34.3°C and 39.5°C and the 

humidity between 57% and 68%, with effective responses to changes in environmental conditions, such as turning off 

the lights and starting the fans when the temperature increases. The success rate of fuzzy logic in this test reached 90%. 

2.2. Acquisition Data 

Dataset collection is an important step in the development of a reliable object detection model. In this research, data 

was collected from various online sources to ensure the variety and completeness of the datasets. The following are 

some of the techniques and sources used to collect datasets: video footage from youtube, image sources from websites 

such as kaggle and github, and synthetic data using GAN. 

2.3. Processing Data 

Once the dataset is collected, the next step is to perform image preprocessing to train the YOLOv9-S model. Images 

from various online sources were sorted to select those that were appropriate and relevant, while those that were blurry, 

too dark, or unclear were removed. Each selected image was then cropped with a 1:1 ratio for aspect ratio uniformity, 

and resized to 640x640 pixels according to the standard input size of the YOLOv9-S model. 

The processed dataset was then divided into two parts: 85% for training data and 15% for testing data. Out of a total of 

439 images, 65 images were used for test data, and 374 images were used for the training process. Before training, 

rotational augmentation was performed on the training data so that the total data for training was 1,122 images. Figure 

12 shows an example of the dataset used. 

 

Figure 12. Sample datasets 
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2.4. Training Model 

The model training process involves several important steps and settings to ensure the YOLOv9-S model can detect 

objects with high accuracy. Data augmentation techniques are used to increase the variety of the dataset and help the 

model generalize better. The augmentation techniques used include HSV Saturation Augmentation to increase color 

variation [48], HSV Value Augmentation to make the model more robust to lighting changes [49], Translation 

Augmentation to make the model more resistant to shifting objects in the image, and Scale Augmentation to help the 

model recognize objects of various sizes [50]. This augmentation aims to enrich the dataset and improve the model's 

ability to deal with various conditions when detecting objects [51]. Figure 13 shows the HSV Saturation, HSV Values, 

Translation, and Scale augmentations, which were used to increase the variety in the dataset. These augmentation 

techniques help in enriching the training data, allowing the model to learn from different conditions and improve 

prediction accuracy. 

 

Figure 13. HSV Saturation, HSV Values, Translation, and Scale Augmentation 

Mosaic Augmentation combines four different images into one to increase the diversity of context in the image [44], 

[52], [53]. Figure 14 shows the example of mosaic augmentation. 

 

Figure 14. Example of mosaic augmentation 

MixUp Augmentation mixes two images and their annotations to increase data variation and make the model more 

resistant to overfitting [54], [55]. Figure 15 shows the example of MixUp augmentation. 

 

Figure 15. Example of MixUp augmentation 

Copy & Paste Augmentation adds objects from one image to another to increase the number and variety of objects in 

the image [56], [57]. Figure 16 shows the example of copy and paste augmentation. 
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Figure 16. Example Of Copy & Paste Augmentation 

The training process involved splitting the dataset into 70% training data, 20% validation data, and 10% test data. The 

model was trained using the PyTorch framework [58], with a number of epochs of 35 and a batch size of 16. The initial 

learning rate was set at 0.01, and the weight decay coefficient was 0.00005. Warm up training strategy is implemented 

in the first three epochs with a momentum value of 0.8. Furthermore, mosaic augmentation will be turned off in the 

last 5 epochs. The model training process involves setting hyperparameters and data augmentation techniques to 

achieve high object detection accuracy. The model was trained for 35 epochs with a batch size of 8, using the SGD 

optimizer. The initial learning rate was set at 0.01 with a momentum of 0.937 and weight decay of 0.00005. There is a 

warm-up for 3 epochs with a warm-up momentum of 0.8. The augmentation techniques used include HSV saturation 

augmentation with a value of 0.7, HSV value augmentation with a value of 0.4, translation augmentation of 0.1, and 

scale augmentation of 0.9. In addition, mosaic augmentation is applied with a value of 1.0, MixUp augmentation with 

0.15, and copy & paste augmentation with 0.3. The training process is closed with close mosaic epochs of 5. 

3.5. Performance Metrics 

After the model was trained and validated on the Google Colab platform with a GPU platform, in the experiments 

conducted, the model can detect chicks both in a newly hatched state (wet) and in a dry state with a precision value at 

the time of training of 92%. Figure 17 shows the overall results of the proposed model, including loss, precision, and 

recall values. 

 

Figure 17. Training Results of The Proposed Model 

The train/box_loss, train/cls_loss, and train/dfl_loss graphs show a consistent decrease in loss values during training, 

indicating the model is getting better at adjusting parameters for object detection. The metrics/precision and 

metrics/recall graphs show an increase in precision and recall, indicating the model is getting more accurate in detecting 

objects with fewer errors. Evaluation using test data showed high performance with mAP50 of 93.7%, indicating high 

accuracy in detecting and classifying objects at lower IoU thresholds. Meanwhile, the mAP50:95 of 71.3% 

demonstrates the model's ability to detect objects at various levels of difficulty. These results show that the model is 

able to achieve high object detection performance well under various conditions. 

3.6. Result and Discussion 

Figures 18 and figure 19 show the results of the model prediction in detecting the chick object. 
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Figure 18. Object Detection Results from The Trained Model 

 

Figure 19. Object Detection Result on Egg Incubator 

The figure above shows that the model can consistently detect and classify chicks under various lighting conditions 

and viewing angles even in complex environments such as smart egg incubators. The high parameter and computational 

efficiency with only 7.1 million parameters and 26.4 G FLOPs allow this model to be used in real-time applications 

such as egg incubator monitoring with high accuracy. To evaluate the performance of the proposed model, training and 

evaluation of other object detection models are conducted for comparison using the same datasets with 35 epochs and 

default parameter settings. The models used for comparison are YOLOv8 and YOLOv7 [45]. The following table 3 

compares the evaluation results: 

Table 3. Model Performance Comparison 

Model mAP50 mAP50:95 Param. FLOPs 

Our Model (YOLOv9-S) 93,7% 71,3% 7,1 M 26,4 G 

YOLOv8-S 93,2% 72,7% 11,2 M 28,6 G 

YOLOv7 87,6% 58,3% 37 M 103,2 G 

The evaluation results show that the YOLOv9-S model has competitive performance compared to YOLOv8 and 

YOLOv7. Although YOLOv8 is slightly superior in mAP50:95, YOLOv9-S shows balanced performance with a lower 

number of parameters and FLOPs of 26.4 G, making it more computationally efficient, faster in inference, and more 
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energy efficient. Designed for computational efficiency, YOLOv9-S enables real-time object detection with high 

accuracy. Advanced augmentation techniques such as mosaic and MixUp enhance model generalization capabilities. 

Optimal hyperparameter settings, including warm-up strategy and learning rate adjustment, contribute to the high 

performance of this model. 

The achieved metrics, such as mAP50 of 93.7% and mAP50:95 of 71.3%, demonstrate the high accuracy and 

robustness of the YOLOv9-S model in detecting and classifying hatched chicks. For end-users, this high level of 

accuracy means more reliable monitoring of the hatching process, reducing the need for manual supervision and 

increasing the likelihood of identifying and addressing issues promptly. This can lead to higher hatching success rates 

and lower chick mortality. Additionally, the ability to accurately classify hatched chicks in real-time allows farmers to 

make immediate decisions regarding the care and management of the chicks, improving overall efficiency and 

productivity in the hatchery operations. These practical benefits highlight the value of the developed system in 

enhancing the effectiveness and reliability of egg incubation for end-users. 

The integration of IoT technology significantly enhances the overall performance and scalability of the Smart Egg 

Incubator system. IoT enables real-time monitoring and control of the hatching environment, allowing for precise 

adjustments to temperature and humidity. This results in higher hatching success rates and reduced chick mortality. 

However, the implementation of IoT also presents challenges such as ensuring reliable network connectivity and data 

security. Scalability is achieved through the modular design of the system, allowing additional sensors and devices to 

be integrated as needed. Despite these advantages, limitations such as the dependency on stable internet connections 

and potential vulnerabilities to cyber-attacks need to be addressed. 

4. Conclusion 

The YOLOv9-S model has demonstrated high performance and reliability in object detection for smart incubator 

monitoring applications in chicken hatching. The model achieved an impressive mAP50 of 93.7% and mAP50:95 of 

71.3%, with efficient parameter and computational usage (7.1 million parameters and 26.4 GFLOPs). Effective 

augmentation techniques and optimal hyperparameter settings contributed to these results. Additionally, fuzzy logic 

was used to adaptively regulate incubator temperature and humidity, maintaining optimal conditions with a 90% 

success rate. The system effectively controlled temperature between 34.3°C and 39.5°C and humidity between 57% 

and 68%. The integration of IoT in the smart incubator facilitated improved monitoring and control, resulting in higher 

hatching success rates, reduced chick mortality, and increased operational efficiency. The high accuracy and robustness 

of the YOLOv9-S model support its potential for enhancing real-time monitoring and decision-making in hatcheries. 

These technological advancements can lead to more intelligent, automated systems that require minimal human 

intervention, boosting productivity and scalability. Future research could focus on the integration of the upcoming 

YOLOv10 model, which promises even higher accuracy and efficiency. Additionally, exploring diverse data 

augmentation techniques could further enhance model robustness. Optimizing fuzzy logic algorithms and incorporating 

various sensors, such as CO2 and advanced humidity sensors, could improve environmental regulation in incubators. 

These advancements would benefit not only smart incubator applications but also other areas of poultry farming, such 

as broiler production and disease monitoring, providing a comprehensive approach to farm management and 

automation. 
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