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Abstract 

The study aims to comprehensively analyze the spatial distribution and varying risk levels of Dengue Hemorrhagic Fever (DHF) within Aceh 
Province. The primary objective is to identify and delineate regions within Aceh Province that demonstrate diverse probabilities of DHF 
occurrences. By investigating the discrepancies in DHF cases and population susceptibility across districts and cities, the research intends to 
facilitate strategic planning and targeted interventions for disease mitigation and control. Utilizing secondary data sourced from the Aceh 
Provincial Health Profile spanning 2016 to 2022, this study employs the Bayesian Conditional Autoregressive (CAR) prior model Besag-York-
Mollie (BYM). This statistiThe research significantly contributes to enhancing our understanding of DHF distribution patterns and associated 
risks within Aceh Province. By employing a robust statistical model and analyzing secondary health profile data, the study offers valuable insights 
into identifying areas with varying levels of DHF risk. The findings are pivotal in guiding evidence-based decision-making for targeted 
interventions, resource allocation, and strategic planning aimed at mitigating the impact of DHF in high-risk regions. The study's outcomes 
highlight notable fluctuations in mortality due to dengue cases within Aceh Province, particularly evident in the peaks observed during 2016 and 
2022. Furthermore, through the Bayesian CAR (BYM) model, the research identifies districts and cities with varying relative risk values for DHF 
occurrences. Notably, Sabang city emerges with the highest relative risk value of 3.54, signifying elevated susceptibility, while Bener Meriah 
district demonstrates the lowest relative risk at 0.2, indicating lower vulnerability to DHF. These findings provide critical insights into the 
heterogeneous DHF risk landscape across Aceh Province, informing targeted interventions and planning strategies to effectively address the 
disease burden. 

Keywords: Dengue Fever, Bayesian Conditional Autoregressive, Besag-York-Mollie, Aceh Province. 

1. Introduction  

Health problems are a serious problem in the world. Infectious diseases are disease problems that are one of the factors 

or causes of death in the world [1][2]. Infectious diseases can be influenced by climate change and extreme 

environmental conditions. One of the most dangerous infectious diseases for the community is Dengue Hemorrhagic 

Fever (DHF); socioeconomic status, globalization, climate and temperature changes are highly involved in the spread 

of dengue fever and many scientists and healthcare professionals believe that dengue will continue to be on the rise 

especially when influenced by these factors. [3].  

Dengue Fever is an infectious disease that can be fatal to those who become infected. Dengue fever is a disease 

transmitted by the Aedes aegypti mosquito. As reported by [4] , the global prevalence of Dengue Fever has exhibited 

a rapid increase in recent years. Current estimates suggest that approximately half of the world's population is at risk 

of developing dengue disease. An estimated modeling using a cartographic approach shows that approximately 390 

million dengue fever infections occur annually worldwide, of which 96 million manifest clinically with acute severity 

[5]. Additional studies support the notion that approximately 3.9 billion individuals, constituting nearly half of the 

global population, are at risk of contracting the dengue virus [6]. 

The first dengue fever in Indonesia was found in the city of Surabaya in 1968 with 58 infected   cases and 24 of them 

died. DHF cases have spread to all provinces in Indonesia, including Aceh province, which is located at the western 

tip of Indonesia.  Aceh province is situated in a region characterized by a diverse climate, spanning from temperate to 

tropical zones. This climate makes it easy for Aedes mosquitoes to breed, so Aceh experiences many dengue cases 

every year. Aceh exhibits variations in the prevalence of DHF cases and the at-risk population across its districts and 

cities. As a result, the number of cases and population at risk of DHF varies. Therefore, it is important to plan which 
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districts and cities have a high chance of DHF. 

Disease Mapping has gained prominence within the field of Spatial Epidemiology due to its increasing relevance and 

applications [7]–[9], . The main objective of Disease Mapping is to estimate the spatial pattern of disease risk in a unit 

area and to identify areas that have a high level of disease risk [10][11]. The simplest measure (parameter) in mapping 

disease is through the incidence rate. Incident Rate is the ratio between the number of people suffering from a disease 

and the total population at risk in a particular area. The Incidence Rate may yield less accurate results in areas with 

diverse populations, as it may fail to standardize risk across regions, potentially leading to errors in interregional 

comparisons. In addition, Dengue Fever (DHF) is an infectious disease spread by Aedes Aegypti and Aedes Albopictus 

mosquitoes which are vectors for the dengue virus. DHF disease occurs mostly during the rainy season because of the 

large amount of standing water that can be a breeding ground for mosquitoes. In disease mapping utilizing the Incidence 

Rate measure, spatial information is not integrated into the calculation, limiting its ability to account for spatial 

variability. Therefore, disease mapping requires an approach that incorporates spatial information into the modeling 

and estimates relative risk values. 

One method that can be used to estimate the relative risk value of disease spread is to use the Bayesian Conditional 

Autoregressive (CAR). In the Bayesian CAR approach, the modeling takes into account the smoothing of the estimated 

value of the relative risk and includes spatial information to reduce the error of the estimated relative risk parameters 

so that a more reliable relative risk estimate is obtained. The term 'Bayesian' pertains to a smoothing model concept, 

whereas 'Conditional Autoregressive (CAR)' denotes a modeling approach that facilitates the inclusion of spatial 

information. 

To determine which parts of Aceh Province are most vulnerable to DHF, a relative risk analysis of the spread of DHF 

is needed. A study used Bayesian CAR with the BesagYork-Mollie (BYM) model to estimate the relative risk [12]. 

Previously, a study used Bayesian CAR to compare the BYM model and localized model in a study to estimate the 

relative risk of air pollution [13]. The localized model had a smoother relative risk than the BYM model, according to 

the study. In disease mapping using the localized model, it is assumed that the number of dengue fever patients follows 

a Poisson random variable distribution, and the data exhibits a cluster structure. This model allows us to determine the 

risk level of dengue fever spread every year in each district in Aceh Province. Therefore, the objective of this study is 

to estimate the relative risk to determine which parts of Aceh Province have the greatest risk of DHF spread. The 

findings of the study allowed for the mapping of DHF in Aceh Province for each district, showing that Aceh Province 

is still highly vulnerable to the disease. 

2. Literature Review  

The CAR Model is used to analyze data in various fields such as demography, geography, economics and 

epidemiology. In the field of epidemiology, CAR models are usually used to explain observations that vary on a discrete 

index set of the number of disease cases in a region. By developing a smoothing model and incorporating spatial data 

into the model, the weakness of the SMR method for relative risk assessment can be overcome. Bayesian CAR is a 

disease mapping method that models relative risk by focusing on smoothing the estimated value of relative risk and 

incorporating spatial information with the aim of reducing the estimated error of relative risk parameters so as to obtain 

more reliable estimates of relative risk [14]. 

2.1 Besag-York-Mollie Model (BYM) 

In calculating relative risk, the BYM model incorporates unstructured spatial random effects (correlated heterogeneity) 

and structured spatial random effects (uncorrelated heterogeneity) into a log-linear model. The inclusion of these spatial 

random effects allows the smoothing of relative risk at both global and local levels. The equation of the BYM model 

developed by [15] is as follows: 

𝑦𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑖𝜃𝑖)       (1) 

log 𝜃𝑖 =  𝛼 + 𝑢𝑖 +  𝑣𝑖      (2) 

Where 𝑦𝑖  is the number of disease cases in region i, 𝑒𝑖 is expected number of disease cases in region 𝑖, 𝜃𝑖 is relative 

risk in region 𝑖, 𝛼  is overall relative risk level, 𝑢𝑖 is unstructured spatial random effects (uncorrelated heterogeneity) 

and 𝑣𝑖 is structured spatial random effects (correlated heterogeneity).  
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Bayesian modeling requires specification of the prior distribution of each component [16][17]. The prior distribution 

for spatially structured random effects (uncorrelated heterogeneity) is independent of geographic location and is 

assumed to follow a normal distribution with mean zero and variance 𝜏𝑣
2, or 

𝑣𝑖 ~ 𝑁(0, 𝜏𝑣
2)      (3) 

The unstructured spatial random effects (correlated heterogeneity) are used for the clustering component, where the 

estimated risk in each region is influenced by neighboring regions. The equation can be written as follows: 

[𝑢𝑖|𝑢𝑗, 𝑖 ≠ 𝑗, 𝜏𝑢
2] ~ 𝑁(𝑢�̅�, 𝜏𝑢

2)      (4) 

𝑢�̅� =  
1

∑ 𝜔𝑖𝑗𝑗
 ∑ 𝑢𝑗𝑗 𝜔𝑖𝑗      (5) 

𝜏𝑖
2 =  

𝜏𝑢
2

∑ 𝜔𝑖𝑗𝑗
       (6) 

where the prior mean of each 𝑢𝑖 is defined as the weighted average of the other 𝑢𝑗. 𝜔𝑖𝑗 is defined as the relationship 

between regions 𝑖 and 𝑗. The precision parameters 𝜏𝑣
2 and 𝜏𝑢

2 control the amount of variability of random effects u and 

𝑣, respectively. 

In Bayesian model analysis, specifying the prior distribution for precision parameters 𝜏𝑣
2 and 𝜏𝑢

2 is essebsial. As 

suggested by [18],  a gamma distribution with parameters (0.5, 0.0005) is recommended, as it provides a 99% 

probability coverage for both parameters. This prior selection minimizes the influence on relative risk inference. 

2.2 The Markov Chain Monte Carlo 

The Markov Chain Monte Carlo (MCMC) method is a sample simulation method that uses the properties of Markov 

chains to generate values that approximate the mean value of the posterior distribution [19]. Suppose that we have 

some distribution π(x), 𝑥 ∈ 𝐸 ⊆ 𝑅𝑝, which is known only up to some multiplicative constant. We commonly refer to 

this as the target distribution. If π is sufficiently complex that we cannot sample from it directly, an indirect method for 

obtaining samples from π is to construct an aperiodic and irreducible Markov chain with state space E, and whose 

stationary (or invariant) distribution is π(x). Sources for readers who may want to delve deeper into the MCMC method 

[2]. Then, if we run the chain for sufficiently long, simulated values from the chain can be treated as a dependent 

sample from the target distribution and used as a basis for summarizing important features of π. Many important 

implementational issues are associated with MCMC methods. These include (among others) the choice of transition 

mechanism for the chain, the number of chains to be run and their length, the choice of starting values and both 

estimation and efficiency problems.  

In the Bayesian approach, the parameters used are not constant or are random variables that follow a distribution [20]. 

The description of these parameters is obtained through determining the posterior distribution [21]–[23]. 

One key algorithm within the MCMC method is the Gibbs Sampling technique, as explained by [24][25]. Gibbs 

Sampling simplifies complex calculations by generating random variables from the marginal distribution without the 

need for density calculations [26][27]. It focuses on identifying the univariate conditional distribution, involving only 

one variable to be determined [28][29]. 

2.3 Relative Risk 

In basic epidemiologic calculations, Relative Risk (RR) is the ratio of the risk between exposed and unexposed groups 

in terms of the likelihood of the group developing a particular health problem or disease [30]. The number of times the 

risk of developing a disease in an exposed population is greater than in an unexposed population is shown as the relative 

risk. 

The relative risk in each region is classified into five categories based on the relative risk classification system 

according to  as follows: 

a. 0 ≤ 𝜃𝑖< 0.5, meaning that the relative risk level of disease spread in region i is very low. 

b. 0.5 ≤ 𝜃𝑖 < 1, meaning that the relative risk level of disease spread in region i is low. 

c. 1 ≤ 𝜃𝑖 < 1.5, meaning that the relative risk level of disease spread in region i is medium. 

d. 1.5 ≤ 𝜃𝑖 < 2, meaning that the relative risk level of disease spread in region i is high. 



Journal of Applied Data Sciences 

Vol. 4, No. 4, December 2023, pp. 466-479 

ISSN 2723-6471 

469 

 
e. 𝜃𝑖 ≥ 2, meaning that the relative risk level of disease spread in region i is very high. 

Disease Mapping is a growing study in the world of Spatial Epidemiology. The main objective of disease mapping is 

to estimate the spatial pattern of disease risk in a unit area and to identify areas that have a high level of disease risk. 

3. Method 

3.1 Data Source 

The type of data used in this study is secondary data sourced from the Aceh Health profile from 2016 to 2022. The 

research focused on 23 districts and cities in Aceh Province, covering a 7-year period from 2016 to 2022. During this 

timeframe, there were a total of 11,483 DHF cases.  

3.2  Phases of Data Analysis  

In this study, statistics is the primary method employed to warrant that the results are generalizable to a wider data 

[31][32]. Data processing in this study used R 4.3.1 software, OpenBugs 3.2.3 and QGIS 10.4. Initial analysis was 

carried out descriptively. The statistical approach employed in this study involves measures of central tendency and 

variability, which are integral components of descriptive statistical analysis [32]. This analysis was used to understand 

the essential characteristics of the data, and it provided basic information about the data [33][34].  

In the simulation stage, the study determine the neighboring relationship between regions using a spatial weighting 

matrix with the Queen contiguity method and conduct relative risk analysis with the Bayesian Conditional 

Autoregressive (CAR) approach using the Besag-York-Mollie (BYM) prior model. In the stage of estimating relative 

risk, the study estimated the relative risk value in each region from the average sample generated using the Markov 

Chain Monte Carlo (MCMC) simulation process.  

In the Gibbs Sampling algorithm, the value of each parameter or sample, namely 𝛩 = {𝜃𝑖}  with i = 1,2, ... n, is obtained 

from the results of the jth iteration which is denoted by 𝜃𝑖
(𝑖)

.  According to [35], the Gibbs Sampling algorithm follows 

these steps: first, define a vector of initial sample values 𝜃(0) = (𝜃1
(0)

, 𝜃2
(0)

, … , 𝜃𝑛
(0)

); second, find the full conditional 

distribution for each sample, i.e. the conditional distribution of 𝜃𝑖; 𝑖 = 1, 2, … , 𝑛 given all samples other than 𝜃𝑖 and 

denoted as 𝑝(𝜃(−𝑖)); last, iterate over each sample j times using the full conditional distribution for each sample. For 

clarity, the first iteration of this algorithm is: 

Sample 𝜃1
(1)

 is obtained from 𝑝 (𝜃2
(0)

, 𝜃3
(0)

, … , 𝜃𝑛
(0)

). 

Sample 𝜃2
(1)

 is obtained from 𝑝 (𝜃1
(1)

, 𝜃3
(0)

, … , 𝜃𝑛
(0)

). 

Sample 𝜃3
(1)

 is obtained from 𝑝 (𝜃1
(1)

, 𝜃2
(1)

, 𝜃4
(0)

, … , 𝜃𝑛
(0)

). 

: ̇ 

Sample 𝜃𝑛
(1)

 is obtained from 𝑝 (𝜃1
(1)

, 𝜃2
(1)

, 𝜃3
(1)

, … , 𝜃𝑛−1
(1)

). 

After running the iteration process for j times, 𝜃1
(𝑗)

, 𝜃2
(𝑗)

, … , 𝜃𝑛
(𝑗)

are obtained which approach the mean value of the 

posterior distribution. Furthermore, determining the convergence of relative risk parameters as validity through 

diagnostic plots of parameters in each district/city. This stage consist of three step; first, mapping the relative risk of 

DHF in Aceh Province based on the classification results obtained in each district/city. Second, determining the relative 

risk mapping from 2016 to 2022 in each district/city that has been grouped based on the classification results obtained 

in each district/city. Last, determine the relative risk mapping from 2016 to 2022 in each district/city that has been 

grouped based on its relative risk category. 
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4. Results and Discussion 

4.1 Statistics Descriptive 

In the ongoing efforts to understand and improve health outcomes across various regions, studies focusing on 

prevalence and incidence rates of diseases are crucial. They provide insights into the effectiveness of current health 

interventions and identify areas in need of additional resources. The following table presents the findings from a 

comprehensive study conducted in different cities and districts, revealing significant data points on health-related 

measurements within these populations. The parameters captured include the minimum and maximum values observed, 

the mean and standard deviation indicating the average and variability of the data, and the interquartile range showing 

the middle spread of the values. Additionally, the population of each area is noted alongside the percentage of 

prevalence and the calculated incidence risk per 100,000 inhabitants. This data is vital for public health officials and 

policymakers as they strategize to address the healthcare needs of these communities. 

Table 1. Descriptive analysis of dengue cases in Aceh province 2016-2022 

No City/District Min Max Mean SD IQR Population Prevalence 
Inciden 

Risk 

(per100k) 

1 Simeulue 1 92 40.57 40.11 78 92,977 2% 44.14 

2 Aceh Singkil 11 184 55.00 60.98 57 126,514 4% 44.71 

3 Aceh Selatan 10 197 65.86 64.21 70 234,761 3% 27.85 

4 Aceh Tenggara 4 47 19.14 14.40 18 220,860 1% 10.14 

5 Aceh Timur 10 156 86.29 53.67 114 429,006 4% 20.28 

6 Aceh Tengah 8 293 99.43 91.64 61 213,056 5% 48.57 

7 Aceh Barat 9 133 70.29 46.49 84 201,682 4% 34.42 

8 Aceh Besar 30 389 172.43 126.84 225 409,109 8% 41.42 

9 Pidie 28 357 189.57 122.39 232 440,231 9% 43.14 

10 Bireuen 34 410 185.71 143.25 235 443,874 9% 37.71 

11 Aceh Utara 19 108 55.71 30.46 49 602,793 3% 9.14 

12 Aceh Barat Daya 15 266 78.29 85.72 45 150,775 5% 52.71 

13 Gayo Lues 0 34 7.29 12.12 8 96,126 0% 5.85 

14 Aceh Tamiang 5 252 90.86 94.23 172 294,356 5% 31.42 

15 Nagan Raya 11 68 28.29 18.75 14 168,392 2% 16.7 

16 Aceh Jaya 5 50 24.43 19.33 37 92,892 2% 16.71 

17 Bener Meriah 0 22 10.71 9.23 17 152,369 1% 7.34 

18 Pidie Jaya 10 100 67.43 30.75 47 160,115 5% 44.28 

19 Banda Aceh 19 366 189.00 130.81 246 257,635 9% 70.61 

20 Sabang 4 88 46.29 26.28 32 35,076 2% 158.47 

21 Langsa 18 453 132.14 146.94 88 183,386 7% 42.42 

22 Lhokseumawe 47 280 107.00 79.75 62 195,186 8% 53.28 

23 Subulussalam 4 36 12.00 11.50 13 83,273 1% 13.42 

The average number of dengue cases in Aceh from 2016 to 2022 was 3,029 cases per year from 2016 to 2022. The 

highest prevalence of cases was found in Pidie, Bireuen, and Banda Aceh districts with 9% and the lowest prevalence 

was found in Gayo Lues district with 0% prevalence. The highest number of DHF cases was found in Pidie district, 

indicating that Pidie district has significant health problems and requires intensive prevention and treatment measures. 

4.2 Spatial Analysis 
Spatial relationships between regions are defined by adjacency, which reflects the relative positioning of spatial units 

within a given space. We employed the queen contiguity weight (based on the intersection of sides and corners) to 

establish neighboring relationships among the 23 districts and cities in Aceh Province, resulting in a 23×23 spatial 

weighting matrix. The map of Aceh Province with queen contiguity can be described in Figure 1. 
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Figure 1. Map of neighborhood relations between districts/cities in Aceh 

Figure 1 illustrates neighboring relationships among Aceh's districts and municipalities. Notably, Sabang City 

and Simeulue District, being islands, lack direct neighboring relationships with other districts or municipalities. 

Kabupaten Aceh Tengah stands out with seven neighboring districts. For detailed information on neighboring 

relationships, please refer to Table 1. 

Table 2. Map of neighborhood relations between districts/cities in Aceh 

No Districts/ Cities Neighbouring Districts/Cities 
Sum of 

Neighbours 

1 Sabang - 0 

2 Banda Aceh Aceh Besar 1 

3 Aceh Besar Banda Aceh, Aceh Jaya, Pidie 3 

4 Aceh Jaya Aceh Barat, Pidie, Aceh Besar 3 

5 Aceh Barat Aceh Jaya, Nagan Raya, Pidie, Aceh Tengah 4 

6 Nagan Raya Aceh Barat, Aceh Barat Daya, Gayo Lues, Aceh Tengah 4 

7 Aceh Barat Daya Nagan Raya, Aceh Selatan, Aceh Tenggara, Gayo Lues 4 

8 Aceh Selatan Aceh Barat Daya, Aceh Singkil, Subulussalam, Aceh Tenggara 4 

9 Aceh Singkil Aceh Selatan, Subulussalam 2 

10 Subulussalam Aceh Selatan, Aceh Singkil, Aceh Tenggara 3 

11 Aceh Tenggara Aceh Barat Daya, Aceh Selatan, Subulussalam, Gayo Lues 4 

12 Gayo Lues 
Nagan Raya, Aceh Barat Daya, Aceh Tenggara, Aceh Tamiang, Aceh Timur, 

Aceh Tengah 
6 

13 Aceh Tamiang Gayo Lues, Langsa, Aceh Timur, 3 

14 Langsa Aceh Tamiang, Aceh Timur 2 

15 Aceh Timur 
Gayo Lues, Aceh Tamiang, Langsa, Aceh Utara, Aceh Tengah, Bener 

Meriah 
6 

16 Aceh Utara Aceh Timur, Lhoseumawe, Bireuen, Bener Meriah 4 

17 Lhoseumawe Aceh Utara 1 

18 Bireuen Aceh Utara, Pidie Jaya, Pidie, Aceh Tengah, Bener Meriah 5 

19 Pidie Jaya Bireuen, Pidie 2 

20 Pidie Aceh Jaya, Aceh Besar, Aceh Barat, Bireuen, Pidie Jaya, Aceh Tengah 6 

21 Aceh Tengah 
Aceh Barat, Nagan Raya, Gayo Lues, Aceh Timur, Bireuen, Pidie, Bener 

Meriah 
7 

22 Bener Meriah Aceh Timur, Aceh Utara, Bireuen, Aceh Tengah 4 

23 Simeulue - 0 

4.3 Relative Risk Estimation 

The relative risk values for each district and municipality in Aceh are estimated using the Markov Chain Monte Carlo 

(MCMC) simulation process. One of the algorithms used in the MCMC method is the Gibbs Sampling algorithm. In 
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the Gibbs Sampling algorithm, the value of each parameter or sample, namely 𝛩 = {𝜃𝑖} with i = 1,2, ..., n, is obtained 

from the results of the jth iteration which is denoted by 𝜃𝑖
(𝑖)

. To obtain good estimation results, it is necessary to check 

the convergence of relative risk parameters as validity through parameter diagnostic plots in each district/city. 

The final result of the risk estimation process is the relative risk value from the simulation results generated through 

the use of the Gibbs Sampling algorithm. By iterating 10,000 times, the diagnostic plot of relative risk parameters for 

each district/city in Aceh Province was obtained.  Parameter diagnostic plots for several districts and cities can be 

observed in Figure 2 to Figure 6. 

 

 
 

 
 

 

 

Figure 2. Diagnostic Plot of Relative Risk Parameters for Simeulue district 

 

 

 
  
 

 
 
 

 

 
 

 

Figure 3. Diagnostic Plot of Relative Risk Parameters for Bireuen district 

 

 

 

 

 

 

 

 

(a) Density Plot (b) Autocorrelation Plot 

(c) History Plot 

       (a) Density Plot (b) Autocorrelation Plot 

(c) History Plot 

(a) Density Plot (b) Autocorrelation Plot 
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Figure 4. Diagnostic Plot of Relative Risk Parameters for Aceh Tamiang district  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5. Diagnostic Plot of Relative Risk Parameters for Pidie Jaya district 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Diagnostic Plot of Relative Risk Parameters for Langsa City 

The density plots shown in Figures 2(a) to 6(a) describe the posterior distribution pattern in each district and city. Based 

on the density plot figure, the distribution pattern of the sample values generated in each district/city has only one mode 

value and the pattern is close to a normal distribution so it can be said that the MCMC process meets the convergent 

properties [36].  

(c) History Plot 

(a) Density Plot (b) Autocorrelation Plot 

(c) History Plot 

(a) Density Plot (b) Autocorrelation Plot 

(c) History Plot 
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The strong or weak correlation between sample values can be determined using the Autocorrelation plots shown in 

Figures 2(b) to 6(b). The autocorrelation plot for each district or city shows that the first lag is close to one and 

subsequent lags have values that decrease to close to zero. This result indicates that the resulting sample values do not 

have a strong correlation with each other. The result also implies that the correlation between the sample values 

generated in each district/municipality is in the posterior distribution region. 

The results of the history plot in Figures 2 (c) to 6 (c) of the MCMC process in each district/city are stationary. There 

is no obvious trend or change in spread. We can also get a rough idea of how much dependence there is in the chain by 

counting large wiggles [37]. We can also get a rough idea of how much dependence there is in the chain byThis shows 

that each sample produced is in the domain interval that has a certain value. In addition, the history plot is found to be 

tight or fastly mixing and can capture all possible parameter values, so that the history plot has fulfilled the irreducible 

nature. The history plot also illustrates that the generated value is not in a certain periodicity, so it can also be said that 

the MCMC process carried out fulfills the aperiodic nature. In addition, the parameter value generated in state-i can 

return to state-i so that the resulting MCMC iteration process fulfills the recurrent nature. So it can be said that the 

relative risk parameter has converged at the 10,000th iteration. 

The relative risk of each district/city classified into five categories according to the relative risk classification system 

by [38] is shown in Table 2. 

Table 3. Relative risk of dengue fever in Aceh Province 2016-2022 

Distric/ City Relative Risk Confidence Interval 95% Category 

Aceh Tamiang 5,46 4,81 - 6,16 Very high 

Sabang 2,86 2,13 - 3,71 Very high 

Aceh Tengah 2,83 2,52 - 3,17 Very high 

Lhokseumawe 2,77 2,46 - 3,11 Very high 

Aceh Selatan 1,67 1,44 - 1,91 High 

Langsa 1,48 1,24 - 1,75 High 

Bireun 1,21 1,08 - 1,36 High  

Banda Aceh 1,16 0,98 - 1,35 High 

Pidie Jaya 0,99 0,78 - 1,22 Moderate 

Aceh Barat Daya 0,9 0,69 - 1,12 Moderate 

Pidie 0,86 0,74 - 0,99 Moderate 

Simeulue 0,75 0,69 - 0,81 Moderate 

Subulussalam 0,75 0,69 - 0,81 Moderate 

Aceh Timur 0,74 0,63 - 0,86 Moderate 

Aceh Besar 0,72 0,61 - 0,84 Moderate 

Aceh Barat 0,66 0,51 - 0,82 Moderate 

Aceh Tenggara 0,45 0,33 - 0,59 Low  

Aceh Utara 0,35 0,29 - 0,42 Low 

Bener Meriah 0,27 0,16 - 0,40 Low 

Nagan Raya 0,25 0,15 - 0,37 Low 

Aceh Singkil 0,2 0,11 - 0,33 Low  

Aceh Jaya 0,14 0,05 - 0,26 Low 

Gayo Lues 0,08 0,02 - 0,18 Very low 

There are several districts/cities in the very high relative risk category, namely Aceh Tamiang, Sabang, Central Aceh 

and Lhokseumawe. In the high relative risk category, there are four districts/cities, namely South Aceh, Langsa, Bireun, 

and Banda Aceh. In the medium relative risk category, there are eight districts/cities, namely Pidie Jaya, Southwest 

Aceh, Pidie, East Aceh, Aceh Besar, Simeulue, Subulussalam, and West Aceh. In the relatively low risk category, there 

are six districts/cities: Southeast Aceh, North Aceh, Bener Meriah, Nagan Raya, Aceh Singkil, and Aceh Jaya. Pidie 

Jaya, South Aceh, Sabang, Simeulue, Aceh Jaya, East Aceh, Nagan Raya. In the very low relative risk category is Gayo 

Lues District. The districts/cities of South Aceh, Langsa, Bireun, Banda Aceh, Sabang, Central Aceh, Lhokseumawe, 

and Aceh Tamiang are in the high and very high categories so that when compared to other districts and cities in Aceh, 

these districts and cities are more vulnerable to the risk of dengue transmission. 

4.4. Mapping of the Relative Risk of DHF in Aceh Province 

The relative risk mapping of DHF in Aceh Province was conducted using ArcGis 10.4 software. The map of the 
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relative risk distribution of DHF in Aceh Province based on the estimation results using the BYM CAR model is  

presented in Figure 7: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Map of the relative risk distribution of dengue fever in Aceh Province 2016-2022 

Figure 7 displays the relative risk distribution map of DHF in Aceh for the years 2016-2022. The map reveals that 

regions with very low and low relative risk are predominantly situated in the southeastern part of Aceh, while those 

with moderate relative risk are concentrated in the northwestern part of Aceh. In contrast, districts/cities with high and 

very high relative risk appear to be scattered randomly. 

4.5. Trend Analysis of the Relative Risk 
To see the trend of increasing or decreasing relative risk each year in each district/city, the relative risk value 

was calculated separately for each year. Each district/municipality is grouped based on predetermined categories. The 

trend of relative risk in each category is presented in Figure 8. 

 

 

 

       

 

 

 

 

Figure 8. Trends in relative risk of districts/cities in Aceh by category 

In the very high relative risk category, there are four districts/cities, namely Aceh Tamiang, Sabang, Central Aceh and 

Lhokseumawe. Based on the figure, Sabang City experienced a fairly high upward trend in relative risk in 2019. In 

2019 and 2022, the relative risk in Aceh Tengah District decreased with a value below one. In the high relative risk 

category, there are four districts/cities, namely South Aceh, Langsa, Bireun and Banda Aceh. Langsa experienced a 
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fairly high increase in the relative risk trend in 2017, while Aceh Tengah and Bireun districts showed a downward 

trend in relative risk in 2019 and 2020. 

There are eight districts/cities in the moderate relative risk category. Southwest Aceh experienced a high increase in 

the relative risk trend in 2017. A decrease in the relative risk trend was seen in Pidie Jaya, while other districts/cities 

tended to fluctuate. There were six districts/cities in the low relative risk category. Aceh Singkil District showed a 

significant downward trend in relative risk in 2019. Aceh Jaya district experienced a fairly low decline in relative risk 

in 2016, but again experienced an increase in 2020. Nagan Raya and Aceh Jaya districts experienced an increasing 

trend of increasing risk in 2018, 2019 and 2021. Meanwhile, other districts experienced stable relative risk trends. 

In the very low relative risk category, Gayo Lues is the sole district/city. While Gayo Lues District experienced a 

notable increase in relative risk in 2017, it remained relatively low. Consequently, the study observe that the relative 

risk value in Gayo Lues Regency tends to stabilize below the value of one. 

While this study provides valuable insights into the spatial estimation of relative risk for Dengue Fever in Aceh 

Province, it is important to acknowledge certain limitations in our methodology and data. Firstly, the study relies on 

secondary data sourced from the Aceh Provincial Health Profile from 2016 to 2022, which may have inherent biases 

or inaccuracies. Secondly, the Bayesian Conditional Autoregressive (CAR) approach, though robust, is dependent on 

the assumptions of the Besag-York-Mollie (BYM) Model, which may not capture all spatial complexities. Furthermore, 

the Markov Chain Monte Carlo (MCMC) simulation process, essential for our analysis, has its limitations in terms of 

convergence and the accuracy of the estimated parameters. 

5. Conclusion 

Based on our analysis of the relative risk distribution map of Dengue Hemorrhagic Fever (DHF) in Aceh from 2016 to 

2021, several key patterns and observations emerge. Regions with low and very low relative risk categories are 

predominantly situated in the southeastern part of Aceh, while those with moderate relative risk are concentrated in the 

northwestern part. In contrast, districts and cities with high and very high relative risks exhibit a more random 

distribution. Notably, Aceh Tamiang District, Sabang Municipality, Central Aceh, and Lhokseumawe Municipality 

demonstrate a comparatively higher vulnerability to DHF transmission within Aceh Province. Furthermore, our 

analysis reveals an increasing trend of high relative risk in Pidie Jaya District from 2016 to 2022. This evolving risk 

landscape underscores the dynamic nature of DHF transmission and the necessity for adaptive and timely intervention 

strategies to curb the escalating risk in certain areas. The identified patterns from our analysis offer invaluable insights 

for public health authorities, aiding in the formulation of proactive measures and tailored interventions to address the 

varying DHF risk levels across Aceh Province. By leveraging this knowledge, stakeholders can strategically allocate 

resources and implement focused interventions, ultimately contributing to a more effective and targeted approach in 

controlling and reducing the burden of DHF transmission. 
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