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Abstract 

Pandemic and epidemic events underscore the challenges of balancing health protection, economic resilience, and mobility sustainability. 

Addressing these multidimensional trade-offs requires adaptive and data-driven decision-support tools. This study proposes a hybrid framework 

that integrates machine learning with multi-objective optimization to support evidence-based policymaking in outbreak scenarios. Six key 

indicators—confirmed cases, disease-related mortality, recovery count, exchange rate, stock index, and workplace mobility—were predicted 

using eight regression models. Among these, the XGBoost Regressor consistently achieved the highest predictive accuracy, outperforming other 

approaches in capturing complex temporal and socioeconomic dynamics. To enhance interpretability, we developed SHAPPI, a novel method 

that combines Shapley Additive Explanations (SHAP) with Permutation Importance (PI). SHAPPI generates stable and meaningful feature 

rankings, with immunization coverage and transit station activity identified as the most influential factors in all domains. These importance scores 

were subsequently embedded into the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to construct Pareto-optimal solutions. The 

optimization results demonstrate transparent trade-offs among health outcomes, economic fluctuations, and mobility changes, allowing 

policymakers to systematically evaluate competing priorities and design balanced intervention strategies. The findings confirm that the proposed 

framework successfully balances predictive performance, interpretability, and optimization, while providing a practical decision-support tool for 

epidemic management. Its generalizable design allows adaptation to diverse geographic and epidemiological contexts. In general, this research 

highlights the potential of hybrid machine learning and metaheuristic approaches to improve preparedness and policymaking in future health and 

socioeconomic crises. 
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1. Introduction  

Pandemic events have significantly disrupted global health systems, economies, and social structures [1], [2]. In various 

regions, even after official relaxation of community activity restrictions, fluctuating trends in confirmed cases and 

disease-related mortality have persisted. Historical records from major outbreaks worldwide show that millions of 

confirmed cases, hundreds of thousands of fatalities, and widespread vaccination campaigns can occur within relatively 

short timeframes. Such resurgence patterns highlight the ongoing challenges posed by emerging variants and evolving 

disease dynamics. 

Balancing public health protection with economic resilience remains a complex undertaking. Although Non-

Pharmaceutical Interventions (NPIs), such as community activity restrictions and mobility control measures, have been 

effective in controlling disease transmission [3], they often disrupted mobility and economic activity [4], [5], leading 

to job losses and social distress [6], [7] This reflects the inherent trade-offs between pandemic containment and the 

continuity of socioeconomic functions that policymakers must carefully navigate. 

To support more balanced policies, predictive models are needed to evaluate health, economic, and mobility outcomes 

simultaneously [8]. Traditional epidemic models, such as SIR or SEIR, although foundational [9], lack the flexibility 

to account for complex interdependencies across domains [10], [11]. In contrast, machine learning and metaheuristic 
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optimization techniques have shown strong capabilities in modeling nonlinear high-dimensional relationships [12], 

[13], enabling the optimization of competing objectives through algorithms such as GA, PSO, and SA [14], [15], [16]. 

However, interpretability remains a key challenge, especially in multi-objective settings within low- and middle-

income countries [17], [18], [19], [20]. To bridge this gap, this study proposes a hybrid framework that integrates 

XGBoost, PSO, SHAP, Permutation Importance (PI), and NSGA-II to predict six key indicators and generate 

interpretable, policy-relevant recommendations. Although NSGA-II is widely used, its scalability poses challenges in 

many-objective contexts. Recent advances, such as boundary protection indicators [21], ensemble frameworks 

combining AdaBoost and K-means clustering [22], and dominance-controlled mechanisms [23], [24], underscore the 

importance of adaptive and interpretable optimization strategies for future pandemic modeling. To date, few studies 

have applied this hybrid approach in the Indonesian context [25]. Consequently, this research contributes to the 

literature by developing a comprehensive model that unifies machine learning, metaheuristics, and Explainable 

Artificial Intelligence (XAI) – providing a robust foundation for data-driven decision making to manage pandemic 

dynamics. 

The main contributions of this study can be summarized as follows. We develop a comprehensive prediction framework 

based on the XGBoost Regressor (XGBR) that integrates multiple dimensions of pandemic impact, including public 

health indicators (confirmed cases, disease-related mortality, and recovery count), economic fluctuations (currency 

change rate and stock index movement) and mobility changes (workplace activity). To enhance predictive performance, 

the model employs Particle Swarm Optimization (PSO) for hyperparameter tuning, enabling robust parameter 

adjustment across these diverse targets. Beyond accuracy, interpretability is emphasized through the use of PI, which 

identifies the most influential features shaping model outcomes. To further strengthen explainability, we introduce 

SHAPPI, a novel hybrid method combining SHAP and PI to generate stable and interpretable feature importance scores, 

thus overcoming the limitations of each technique in isolation. Finally, the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II) is applied to extend the framework into a multiobjective optimization setting, allowing the identification 

of Pareto-optimal trade-offs across health, economic, and mobility objectives. Collectively, these contributions 

establish a hybrid, interpretable, and optimization-driven framework that provides a valuable decision support tool for 

policymakers to navigate the complex challenges of pandemic management. 

The remainder of this paper is organized as follows: Section 2 provides a comprehensive literature review. Section 3 

describes the materials and methods used in the study. Section 4 presents the experimental results, discusses the 

findings, and compares them with related work. Finally, Section 5 concludes the paper with key insights and outlines 

potential directions for future research. 

2. Literature Review 

2.1. Hybrid Machine Learning and Metaheuristic Approaches in Pandemic Modeling 

Research on epidemic and pandemic modeling has advanced through the integration of Machine Learning (ML) and 

multi-objective metaheuristic algorithms. The SARS outbreak marked a pivotal milestone, as mathematical models 

were used to analyze transmission, forecast spread, and evaluate control strategies [26]. SARS insights informed 

subsequent modeling of MERS and COVID-19, demonstrating the applicability of epidemic modeling principles in 

different diseases. Hybrid ML–metaheuristic approaches further enhance predictive capability by capturing the 

complex interplay between health, mobility, and economic factors. In outbreak contexts such as MERS [27], H1N1 

[28], ML models including Long-Short-Term Memory (LSTM) [29], Convolutional Neural Networks (CNN) [30], and 

Random Forest (RF) [31], have shown strong performance in forecasting infection trends, mortality, and spatial 

dynamics from temporal and spatial data. 

Beyond predictive models, hybrid strategies using metaheuristics such as the non-dominated classification genetic 

algorithm II (NSGA-II) [32], [33], and PSO [34] have optimized multiple objectives simultaneously, including 

minimizing infection rates, reducing mortality, allocating limited healthcare resources, and mitigating economic 

disruptions. Studies such as [35], [36] emphasize the value of these frameworks to balance trade-offs under crisis 

conditions. Moreover, interpretability tools such as SHAP [32]. improve model transparency, while real-time data 

integration improves responsiveness to rapidly evolving outbreak dynamics. 
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2.2. Regression Modeling with Machine Learning: Development and Evaluation 

Major pandemics including SARS, MERS, and H1N1 have disrupted healthcare systems, economies, and human 

mobility, underscoring the multidimensional nature of epidemic impacts. Economically, recessions, unemployment, 

and shifts in consumer behaviour were observed, with targeted recovery policies proposed by Rathnayaka et al. [37] 

and sustainability-oriented strategies highlighted by Piccarozzi et al. [38] From the health perspective, Clemente et 

al.[39] noted the exacerbation of inequalities and pressure on health infrastructure, while Jordan et al. [40] demonstrated 

how optimization techniques improved vaccine distribution and healthcare resource allocation. Mobility research, such 

as that by Zhang et al. and Mesfin et al. [41], [42], explored the effects of movement restrictions, while Biswas et al. 

[43] recommended adaptive, data-driven restriction policies. 

Recent contributions also highlight the importance of robust and hybrid modelling frameworks. Chaerani et al. [44] 

discussed robust optimization in addressing uncertainty for achieving Sustainable Development Goals (SDGs) during 

crises, and Jamshidi et al. [45] reviewed hybrid deep learning models for pandemic forecasting. Complementary studies 

such as Rabaan et al. [27] on MERS-CoV dynamics, Costa et al. [28],  comparing H1N1 and COVID-19, and Fajardo 

et al. [46] applying mathematical and ML models across outbreaks illustrate that epidemic modeling principles are 

transferable beyond a single disease. More recently, Zhang et al. [47] developed a universal outbreak risk prediction 

tool validated across multiple datasets, while Bedi et al. [48] reviewed the integration of AI with mechanistic 

epidemiological modeling. 

Additional studies have focused on robust optimization and hybrid modelling. Chaerani et al. [44] discussed the 

relevance of robust optimization in addressing uncertainty in achieving SDGs during the pandemic. Jamshidi et al. [45] 

reviewed the application of hybrid deep learning models for forecasting pandemic trends, combining statistical rigor 

with AI flexibility to manage complexity and uncertainty. While significant progress has been made in applying hybrid 

models and incorporating real-time data, gaps remain. Many existing models focus on single-objective optimization or 

lack interpretability. There is a need for more comprehensive approaches that integrate explainable AI, real-time 

socioeconomic indicators, and multi-objective metaheuristics for more robust and actionable pandemic response 

strategies. 

Collectively, these studies demonstrate that hybrid machine learning and metaheuristic approaches are broadly 

applicable to epidemic modelling, offering improvements in predictive accuracy, interpretability, and decision-making 

under uncertainty. This body of literature confirms that the proposed framework is validated for broader application 

across diverse epidemic scenarios. 

3. Methodology  

Figure 1 illustrates the methodological framework adapted from Pan et al. [32], consisting of five main stages: (1) data 

collection, (2) data pre-processing, (3) regression modeling, (4) multi-objective optimization, and (5) policy 

recommendation. The dependent variables comprise six key indicators, while the independent variables are classified 

into health, mobility, and economic factors. Pre-processing includes min-max normalization. Eight regression 

algorithms are applied: RFR, GBR, XGBR, SVR, DTR, ABR, KNN, and LR. Hyperparameter tuning is performed 

using PSO with parameters n (number of particles), d (rolling window depth), s (smoothing parameter), l (lag) and w 

(moving average window). The SHAPPI method, a combination of SHAP and PI, is applied to compute stable and 

consistent feature importance weights. These weights are integrated into the NSGA-II algorithm to generate Pareto-

optimal solutions. Model performance is evaluated using RMSE, MAE, MAPE, and R-squared metrics. Each phase of 

the model is detailed in the following sections. 
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Figure 1. Methodology for implementing the recommended research. 

3.1. Data Collection  

This study employs the Jakarta pandemic dataset, collected during a pandemic period, which encompasses indicators 

related to health outcomes, economic fluctuations, and mobility changes that are pertinent to outbreak modeling. The 

dataset is structured to facilitate predictive modeling and multi-objective optimization, while remaining generalizable 

beyond a specific disease or timeframe. The independent variables (X) are organized into three categories: (1) Health 

outcomes, comprising vaccination coverage, healthcare workforce availability, and hospital bed occupancy, obtained 

from official national databases and the Central Bureau of Statistics (BPS); (2) Economic fluctuations, including the 

inflation rate and monetary policy rate sourced from the Central Bank and Yahoo Finance, as well as social assistance 

programs and minimum wage obtained from BPS; and (3) Mobility changes, derived from Google Mobility Reports, 

which capture variations in public activity across Jakarta. As presented in table 1, the Shapiro–Wilk test (p < 0.001) 

confirms that all variables deviate from normal distribution; consequently, the data are summarized using the median 

and Interquartile Range (IQR) to provide a more robust representation of central tendency and variability. 

Table 1. Characteristics of features in the dataset. 

Category Feature Description Variable Median IQR [Min, Max] 
P-

value 

Health outcomes Hospital Bed Occupancy 𝑋1 23,780.00 699.00 [23,081.0, 23,780.0] <0.001 

Health outcomes 
Healthcare Workforce 

Availability 
𝑋2 56,853.00 17,546.00 [45,552.0, 63,098.0] <0.001 

Health outcomes Vaccination Coverage 𝑋3 1,898,567.00 10,367,980.00 [0.0, 10,805,878.0] <0.001 

Mobility changes 
Retail and Leisure 

Mobility 
𝑋4 -24.00 20.00 [-68.0, 10.0] <0.001 
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Mobility changes 
Essential Services 

Mobility 
𝑋5 -2.00 15.00 [-46.0, 34.0] <0.001 

Mobility changes Visit in Parking Space 𝑋6 -42.00 37.00 [-96.0, 31.0] <0.001 

Mobility changes Public Transport Mobility 𝑋7 -36.00 18.00 [-79.0, 6.0] <0.001 

Mobility changes Residential Mobility 𝑋8 10.00 6.00 [-1.0, 34.0] <0.001 

Economic 

fluctuations 
Inflation Rate 𝑋9 1.66 1.27 [0.91, 4.61] <0.001 

Economic 

fluctuations 
Monetary Policy Rate 𝑋10 3.50 0.50 [3.5, 4.75] <0.001 

Economic 

fluctuations 

Social Assistance 

Programs 
𝑋11 5.29e+11 4.92e+11 [3.97e+10, 5.31e+11] <0.001 

Economic 

fluctuations 
Minimum Wage 𝑋12 4,416,186.00 374,505.00 

[4,267,349.0, 

4,641,854.0] 
<0.001 

To ensure data quality and representativeness, the selected variables reflect empirically grounded indicators that are 

widely used by national agencies. Health-related data provide information on pandemic response capacity, while 

economic and mobility indicators offer consistent metrics to assess broader societal impact. DKI Jakarta, as Indonesia’s 

capital and early epicenter of the pandemic, maintains the most comprehensive and timely data infrastructure. Its data 

sets are routinely used by ministries for the formulation of national-level policies. Therefore, while the study focuses 

on Jakarta, its data serve as a valid national reference to model the response to the pandemic and inform socioeconomic 

recovery strategies. 

3.2. Data Pre-processing 

The variables X are Min Max scaled in the pre-processing phase. The scaler is a method used to adjust the scale of a 

dataset [49]. Scalers are helpful when you have data on different scales and want to customize it to make it easier to 

analyze. This method adjusts the data scale by changing the data values to values between 0 and 1 [50]. Then, Scaler 

compares the data more efficiently and avoids bias due to different scales [51]. The data will then be split using the K-

fold cross-validation process. Cross-validation of K-Folds is a data validation technique used to evaluate the 

performance of machine learning models [52]. Cross-validation of K times was used to assess the consistency of the 

model [53]. This method divides the training data into k parts or k times and uses k=3 characteristics to train the model 

and a factor to test the model. This procedure is performed k times, and each segment is used as test data once. The 

outcome is the average precision of the k tests [52]. 

3.3. Regression Modeling with Machine Learning: Development and Evaluation 

This study applies eight regression-based machine learning models RFR, GBR, XGBR, SVR, DTR, ABR, KNR, and 

LR to predict six key pandemic indicators: confirmed cases (Y1), disease-related mortality (Y2), recovery count (Y3), 

diff-idr (Y4), diff-ihsg (Y5), and workplace mobility (Y6). Each target is treated independently to allow tailored 

hyperparameter tuning across health, economic, and mobility dimensions. Avoid combining SI and CGS units, such as 

current in amperes and magnetic field in oersted’s. This often leads to confusion because equations do not balance 

dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation. 

Each model has specific strengths: ensemble methods like RFR, GBR, and XGBR capture complex patterns and offer 

high accuracy [54], [55]; SVR handles high-dimensional data well [56]; DTR provides interpretability [57]; ABR 

focuses on hard-to-predict samples [58]; KNR captures local patterns [59]; and LR offers a simple baseline [3], 

To improve the performance and generalizability of the model, hyperparameter tuning was performed using the PSO 

algorithm [32]. PSO is recognized for its efficiency in exploring large solution spaces with relatively low computational 

complexity [60]. The tuning process begins by initializing a population of particles, where each particle represents a 

candidate solution, a specific combination of hyperparameters. Each particle evaluates its position based on an 

objective function, typically the prediction error, assessed using metrics such as R-squared (R2), RMSE, MAE and 

MAPE. 
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The model in this study was validated using consistent three-fold cross-validation throughout both the modeling and 

optimization phases to mitigate overfitting and enhance generalizability. Although an independent out-of-sample test 

set was not available, such cross-validation-based evaluation is a well-established practice in predictive modeling using 

historical data [61], [62]. K-fold cross-validation has been shown to yield favorable results even in time series settings 

when adapted appropriately [63]. Furthermore, consistent cross-validation remains a reliable alternative when blocked 

or time-sensitive strategies are infeasible due to data limitations [64]. Although cross-validation may not capture all 

forms of overfitting - especially in highly complex models - its integration with hyperparameter tuning, such as the 

PSO optimization used in this study, represents a multifaceted approach recommended for robust model evaluation 

[32].  

The final evaluation metrics, including MAE, RMSE, MAPE and R2, were calculated in the holdout test set to assess 

the model performance. To ensure robustness and avoid overfitting, three-fold cross-validation is used [32], in which 

each configuration is evaluated on three different data subsets and the results are averaged. During the iterative process, 

PSO updates the velocity and position of each particle by learning from the best-performing individuals and the best 

global solution in the population. This enables the swarm to gradually converge toward optimal hyperparameter 

configurations for each model. The final regression models obtained through PSO tuning are then thoroughly evaluated 

to ensure stable, accurate, and reliable prediction performance across various pandemic-related outcomes. 

3.3.1.  The Proposed SHAPPI: A Hybrid Feature Importance Method Combining SHAP and PI  

This study introduces SHAP–Permutation Importance (SHAPPI) a hybrid explainability method that integrates the 

local interpretability of SHAP values with the global robustness of PI. While SHAP quantifies the marginal contribution 

and polarity of each feature based on Shapley values from cooperative game theory [65], [66], PI evaluates the 

sensitivity of model performance to feature perturbations through random permutation [67]. Each method has its 

strengths: SHAP offers detailed information on individual predictions, while PI reflects the impact of global features. 

However, each also has limitations when used independently. 

SHAPPI addresses these limitations by combining both approaches into a unified scoring mechanism. It produces three 

outputs per feature: (1) the polarity score n, which shows whether the impact of a feature is positive or negative; (2) 

the error score e, derived from permutation-based performance degradation; and (3) the aggregate score a, calculated 

by normalizing and integrating the SHAP and PI scores [68]. The result is a balanced, interpretable, and robust 

importance score.  

The SHAPPI procedure. Given a set of characteristics x, a target y, and a model m, the algorithm calculates the SHAP 

value sf and the PI score pf for each characteristic f. These are normalized and combined to produce the final importance 

score 𝑎𝑓 A normalization step ensures comparability across features, with final weights rescaled to sum to one. These 

weights are stored in a dictionary for use in model interpretation or optimization. The complete pseudocode and 

implementation are detailed in the availability section. 

3.3.2.  Mathematical Formulation of SHAPPI Values 

SHAPPI combines the local interpretability of SHAP values and the global robustness of PI into a unified feature 

importance score.  SHAP assigns a contribution score to each feature by averaging its marginal effect across all possible 

subsets of features. Let 𝑁 be the set of all features, and f(x) the prediction of the model. The SHAP value for feature f, 

denoted sf, is calculated using Formula (1): 

𝑠𝑓 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
𝑆⊆𝑁∖{𝑓}

[𝑓(𝑆 ∪ {𝑓}) − 𝑓(𝑆)] (1) 

SHAP values satisfy key properties of cooperative game theory, including efficiency, symmetry, and additivity [65], 

[69]. PI quantifies the sensitivity of a model to a feature by measuring performance degradation after random 

permutation. Given the original model performance r and the performance after the permutation feature f, denoted rf, 

the PI is calculated using formula (2): 

𝑝𝑓 = 1 −
𝑟𝑓

𝑟
 (2) 
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In Formula (2), this score can be normalized using the Min-Max scaling to align with the SHAP scores. The SHAPPI 

score for a feature f, denoted 𝑎𝑓, integrates both SHAP and PI scores to produce a balanced importance estimate. This 

hybrid score is defined in formula (3): 

𝑎𝑓 =
𝑠𝑓̂ + 𝑝𝑓̂

2
 (3) 

In Formula (3) represents 𝑠𝑓̂ and 𝑝𝑓̂ are the normalized SHAP and PI scores, respectively. 

Theorem 1 (Properties of SHAPPI). SHAPPI combines the strengths of SHAP and PI by inheriting the interpretability 

of the former and the empirical robustness of the latter. Through this integration, SHAPPI enhances the stability in 

feature attribution by uniting two complementary methods that address different aspects of explainability. It mitigates 

bias by reducing the susceptibility of PI to categorical dominance while simultaneously overcoming the model-agnostic 

limitations often associated with SHAP. As a result, SHAPPI offers more comprehensive insights into the relevance of 

features by capturing both local and global perspectives, thereby providing stakeholders with a balanced and reliable 

interpretability framework.  

3.4. Multi-Objective Optimization Using NSGA-II with SHAPPI 

This section presents a multi-objective optimization framework using NSGA-II to model trade-offs among six 

pandemic-related outcomes, guided by SHAPPI-derived feature weights. The optimization seeks to minimize adverse 

outcomes (e.g., confirmed and mortality cases) and maximize favourable indicators (e.g., recovery and workplace 

mobility). 

3.4.1.  Objective Definition 

Each objective function Fj is formulated as a weighted sum of input features xi using SHAPPI importance scores 𝑤𝑖,𝑗 

𝐹𝑗 = ∑ 𝑤𝑖,𝑗

𝑛

𝑖=1

⋅ 𝑥𝑖 ,  𝑗 = 1, … ,6 (4) 

Formula (4) represents each individual objective function 𝐹𝑗, where the summation captures the contribution of each 

feature 𝑥𝑖, weighted by its corresponding SHAPPI importance 𝑤𝑖,𝑗 for the 𝑗-th objective (e.g., positivity rate, mortality, 

economic indicators, etc.). The vector of objectives is: 

F(x) = [F1(x), F2(x), … , F6(x)] (5) 

Formula (5) defines the multi-objective function vector, with each component representing a distinct target metric to 

be minimized simultaneously within the optimization process. 

3.4.2.  Optimization Formulation 

The goal is to minimize the six objectives subject to bounds 𝑥𝑖 ∈ [𝑥𝑙 , 𝑥𝑢], where (𝑥𝑙 = 0) and 𝑥𝑢 is the maximum 

observed value for each feature. The formulation (6) is:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑭(𝒙) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜: 𝑥𝑖 ∈ [𝑥𝑙 , 𝑥𝑢],  ∀𝑖 = 1, … , 𝑛 
(6) 

3.4.3.  NSGA-II Implementation 

The NSGA-II is applied with the following configuration: population size = 500, crossover probability = 0.5, mutation 

probability = 0.2, and 100 generations. Simulated Binary Crossover (SBX) and Polynomial Mutation (PM) are used 

for genetic operations. Tournament selection guides evolutionary progression [32].  

3.4.4.  Model Components. 

The formulation of the model is structured around three main components: objective functions, decision variables, and 

model parameters with their corresponding constraints. These components work together to capture the complexity of 

pandemic dynamics across health, economic, and mobility dimensions. The objective functions (table 2) cover health 
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indicators such as confirmed cases, disease-related, and recovery count, along with economic indicators including 

exchange rate fluctuations and stock index movements, and workplace mobility. 

Table 2. Objective Functions 

Feature Name Feature 

𝒀𝟏 Confirmed Cases 

𝒀𝟐 Disease-related mortality  

𝒀𝟑 Recovery Count 

𝒀𝟒 Difference in IDR Exchange Rate (diff-idr) 

𝒀𝟓 Difference in IHSG Index (diff-ihsg) 

𝒀𝟔 Workplace Mobility 

The decision variables (table 3) represent controllable factors such as healthcare capacity, vaccination coverage, 

different types of mobility, and socio-economic indicators like inflation, monetary policy, social assistance, and 

minimum wage. 

Table 3. Decision Variables 

Feature Name Feature 

𝑿𝟏 Hospital Bed Occupancy  

𝑿𝟐 Healthcare Workforce Availability  

𝑿𝟑 Vaccination Coverage  

𝑿𝟒 Retail and Leisure Mobility  

𝑿𝟓 Essential Services Mobility  

𝑿𝟔 Visit in Parking Space 

𝑿𝟕 Public Transport Mobility  

𝑿𝟖 Residential Mobility 

𝑿𝟗 Inflation Rate  

𝑿𝟏𝟎 Monetary Policy Rate  

𝑿𝟏𝟏 Social Assistance Programs  

𝑿𝟏𝟐 Minimum Wage 

Parameters and constraints (table 4) ensure that the input values remain within realistic limits, define the weighting of 

each objective, and provide an evaluation function to assess Pareto-optimal solutions using NSGA-II. This formulation 

enables the model to capture the complexity of pandemic dynamics while producing balanced trade-offs between 

health, economic, and mobility objectives. 

Table 4. Model Parameters and Constraints 

Parameter and Constraints Description 

𝐱𝐥 Lower bounds for input variables, set to zero in this study 

𝐱𝐮 Upper bounds for input variables, defined as the maximum values in dataset X 

𝐘𝐰𝒆𝒊𝒈𝒉𝒕𝒔 Weight dictionary for each target variable (Y₁ to Y₆) used in weighted fitness computation. 

𝑭𝒀𝒇
 Weighted fitness function for each objective function 𝐹𝑌𝑓

, computed as the sum of feature 

𝑭 Matrix containing all objective functions to be optimized using NSGA-II. 
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F_eval Evaluation metric for analyzing Pareto-optimal solutions, computed as the product of selected 

objective function pairs. 

3.4.5.  Pareto Analysis 

NSGA-II yields a Pareto front of trade-off solutions X* and their corresponding objective values F*. Trade-offs are 

evaluated using a composite measure: 

𝐹eval = 𝐹𝑥 ⋅ 𝐹𝑦 (7) 

In Formula (7) represents 𝐹𝑥 and Fy are selected pairs of objectives. Lower values of  𝐹eval suggest better compromises, 

supporting multi-criteria decision-making. 

3.4.6.  Model Parameters and Constraints 

All parameters and variable definitions are detailed in table 4. The model uses SHAPPI scores to ensure optimization 

is interpretable and data-driven.4. Results and Discussion 

4. Results and Discussion 

4.1. Result 

4.1.1. Regression Model Performance and PSO-Based Optimization for Pandemic Prediction 

The proposed model demonstrated strong predictive performance across multiple key indicators spanning public health, 

economic stability, and population mobility. For health-related metrics, it accurately predicted positivity rates, disease-

related mortality, and recovery counts, enabling timely and informed outbreak management. Economic indicators, 

including currency exchange rate fluctuations and stock market index changes, were also forecasted with high accuracy, 

providing valuable insights for balancing economic resilience with public health interventions. 

Additionally, the model effectively captured mobility trends during outbreak periods, such as changes in workplace 

mobility and transportation activity, which are critical for assessing the effectiveness of intervention measures. To 

achieve these results, eight regression models RFR, GBR, XGBR, DTR, SVR, KNN, ABR, and LR were implemented 

to predict six key indicators: confirmed cases (Y1), disease-related mortality (Y2), recovery count (Y3), diff-idr (Y4), 

diff-ihsg (Y5), and workplace mobility (Y6). Following the configuration by Pan et al. [32], the hyperparameter search 

space includes: number of estimators (n) within [5, 50], tree depth (d) within [5, 50], minimum data for split (𝑠) in [2, 

50], leaf size (l) in [1, 20], and rolling time window size (w) in {3, 5, 7}. The rolling time window technique enables 

dynamic modelling of temporal dependencies by capturing short-term trends and maintaining the sequential integrity 

of the data [70], [71]. This method ensures that predictions are consistently based on the most recent information, 

allowing the model to respond effectively to sudden changes and evolving patterns [72]. 

To further enhance predictive accuracy, the window size is treated as a tuneable hyperparameter. Optimization is 

performed using PSO, a metaheuristic algorithm recognized for its capability in efficiently navigating complex search 

spaces and achieving rapid convergence [32]. The comparative results presented in figure 2 demonstrate the superiority 

of PSO over other tuning methods such as Genetic Algorithm, Grid Search, and Random Search highlighting its 

robustness across various prediction targets. 

 
Figure 2. Hyperparameter Tuning Performance 
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Model performance is evaluated using five metrics: R2, RMSE, MAE, MAPE, and MSE, with a 3-fold cross-validation 

approach. As shown in figure 3, XGBR consistently achieved the lowest RMSE rank across all prediction targets. 

Statistical validation using the Friedman test yielded a p-value of 0.00011, indicating significant differences among 

models, with XGBR outperforming others in nearly all prediction tasks. 

 

Figure 3. Visualization of the Friedman test results comparing average RMSE ranks across all models for eight target 

variables.  

The test reveals statistically significant differences in model performance (p <  0.05), confirming that XGBR 

consistently achieves superior rankings compared to baseline regressors. While other ensemble methods such as GBR 

and RFR also exhibit strong predictive capabilities, XGBR emerges as the most reliable model, with superior 

performance across health, economic, and mobility domains. Table 5 confirms that XGBR achieved the lowest error 

values such as an RMSE of 0.0126 and a MAPE of 0.0290 for mortality prediction demonstrating its reliability and 

generalization capability. Conversely, linear models like LR and weak ensemble methods like AdaBoost exhibit lower 

performance, especially for complex targets such as exchange rate and stock index variation. Overall, the PSO-

optimized XGBR model stands out as a strong candidate for supporting pandemic management through accurate and 

stable predictions. 

Table 5. Overall predictive performance of regression models across six target variables. 

No Model Target R-square RMSE MSE MAE MAPE 

1 

2 

3 

4 

5 

6 

7 

8 

GBR 

XGBR 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

Disease-related Mortality 

0.9999 

0.9999 

0.9999 

0.9999 

0.9955 

0.9999 

0.9977 

0.9819 

0.0104 

0.0126 

0.0088 

0.0108 

0.0678 

0.0120 

0.0478 

0.1355 

0.0001 

0.0001 

0.0001 

0.0001 

0.0046 

0.0001 

0.0023 

0.0183 

0.0086 

0.0039 

0.0042 

0.0049 

0.0559 

0.0054 

0.0360 

0.1027 

0.0362 

0.0290 

0.0304 

0.0330 

0.3789 

0.0292 

0.0655 

0.2696 

9 

10 

11 

12 

13 

14 

15 

16 

GBR 

XGBR 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

Confirmed Cases 

0.9904 

0.9932 

0.9906 

0.9928 

0.7252 

0.9860 

0.8838 

0.4668 

0.1054 

0.0889 

0.1045 

0.0912 

0.5646 

0.1273 

0.3670 

0.7856 

0.0112 

0.0079 

0.0109 

0.0083 

0.3188 

0.0162 

0.1347 

0.6185 

0.0495 

0.0434 

0.0515 

0.0443 

0.2504 

0.0558 

0.2993 

0.5605 

0.2140 

0.2302 

0.2464 

0.2149 

0.6194 

0.4823 

2.6489 

2.5717 

17 

18 

GBR 

XGBR 

Recovery Count 

Recovery Count 

0.9989 

0.9999 

0.0128 

0.0079 

0.0002 

0.0001 

0.0097 

0.0041 

0.0217 

0.0161 
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19 

20 

21 

22 

23 

24 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Recovery Count 

Recovery Count 

Recovery Count 

Recovery Count 

Recovery Count 

Recovery Count 

0.9999 

0.9998 

0.9944 

0.9999 

0.9973 

0.9731 

0.0130 

0.0142 

0.0752 

0.0114 

0.0521 

0.1655 

0.0001 

0.0002 

0.0057 

0.0001 

0.0027 

0.0274 

0.0070 

0.0066 

0.0610 

0.0059 

0.0436 

0.1269 

0.0127 

0.0268 

0.0949 

0.0244 

0.1060 

0.2744 

25 

26 

27 

28 

29 

30 

31 

32 

GBR 

XGBR 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Diff_idr 

Diff_idr 

Diff_idr 

Diff_idr 

Diff_idr 

Diff_idr 

Diff_idr 

Diff_idr 

0.7152 

0.7612 

0.7122 

0.5899 

0.3716 

0.7136 

0.2648 

0.2608 

0.5190 

0.4753 

0.5218 

0.6228 

0.7710 

0.5205 

0.8509 

0.8362 

0.2694 

0.2259 

0.2723 

0.3879 

0.5944 

0.2709 

0.7240 

0.6992 

0.2621 

0.2329 

0.2690 

0.2917 

0.4328 

0.2547 

0.4716 

0.5350 

0.4706 

0.5510 

0.5152 

0.7252 

0.8684 

0.5077 

0.1649 

1.2516 

33 

34 

35 

36 

37 

38 

39 

40 

GBR 

XGBR 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

Diff_ihsg 

0.6962 

0.6076 

0.7071 

0.3279 

0.3263 

0.6693 

0.2662 

0.1075 

0.5431 

0.6173 

0.5388 

0.8078 

0.8088 

0.5666 

0.8628 

0.9309 

0.2950 

0.3811 

0.2903 

0.6526 

0.6541 

0.3211 

0.7444 

0.8666 

0.3672 

0.3774 

0.3577 

0.4816 

0.5834 

0.3658 

0.6363 

0.6969 

1.5172 

1.7117 

1.3403 

2.0138 

1.7768 

1.3854 

2.4853 

2.4692 

41 

42 

43 

44 

45 

46 

47 

48 

GBR 

XGBR 

RFR 

DTR 

SVR 

KNN 

AdaBoost 

LR 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

Workplaces Mobility 

0.9513 

0.9593 

0.9525 

0.9316 

0.8607 

0.9474 

0.8356 

0.8360 

0.2319 

0.2121 

0.2224 

0.2749 

0.3900 

0.2411 

0.4247 

0.4256 

0.0538 

0.0450 

0.0494 

0.0756 

0.1521 

0.0581 

0.1803 

0.1812 

0.1095 

0.1033 

0.1036 

0.1448 

0.2180 

0.1099 

0.3154 

0.2674 

0.5384 

0.5302 

0.6280 

0.6235 

4.1055 

0.6103 

2.5492 

1.2064 

4.1.2. Feature Importance Analysis with SHAPPI 

To enhance model interpretability, we assess the importance of independent variables using XGBR in combination 

with SHAP, PI, and the proposed SHAPPI method. SHAP captures the polarity and marginal contribution of each 

feature, while PI measures the sensitivity of model predictions to feature permutation. SHAPPI integrates both 

perspectives to provide a more balanced attribution. Figure 4(a) to figure 4(h) present comparative feature importance 

visualizations across four target variable scenarios. Each scenario includes a polarity line plot and a stability bean plot. 
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(a) Scenario 1a: Target Variables Y1 with Y3 (b) Scenario 1b: Beanplot for Y1 with Y3 

  

(c) Scenario 2a: Target Variables Y2 with Y1 (d) Scenario 2b: Beanplot for Y2 with Y1 

 

 

(e) Scenario 3a: Target Variables Y4 with Y5 (f) Scenario 3b: Beanplot for Y4 vs Y5 

 

 

(g) Scenario 4a: Target Variables Y5 with Y6 (h) Scenario 4b: Beanplot for Y5 vs Y6 

Figure 4. Comparative visualization of feature importance using SHAP, PI, and SHAPPI across four scenarios. Each 

row illustrates one scenario with its corresponding lineplot (left) and beanplot (right) 

Results indicate that SHAP tends to produce conservative scores cantered near zero, underestimating feature impact. 

In contrast, PI highlights dominant features but suffers from high variance, particularly for variables like vaccination 

converge and inflation rate. SHAPPI consistently demonstrates moderate and stable importance values (range: 0.05–

0.26), mitigating the extremes of SHAP and PI. In Scenario (1b) and (2b), SHAPPI moderates the inflated effect of 

vaccination converge and public transport mobility features observed in PI. In Scenario (3) and (4), SHAPPI effectively 

highlights the contribution of economic and mobility-related variables, offering improved interpretability over SHAP’s 

underestimation and PI’s volatility. 

Figure 5 extends the comparative evaluation of PI, SHAP, and SHAPPI by presenting feature importance rankings for 

each target variable Y1 to Y6 in a unified bar plot visualization. This figure provides a clearer understanding of how 

individual features contribute to model predictions across various interpretability methods. 
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Figure 5. Comparison of Feature Importance Rankings using PI, SHAP, and SHAPPI Methods across Four 

Pandemic Prediction Targets. 

The results indicate that the vaccination coverage is the most influential factor, consistently ranking highest in multiple 

targets, particularly Y1, Y2, and Y5. This highlights the critical role of vaccination coverage in shaping public health 

outcomes, as well as socioeconomic behaviors that may be affected during various crisis situations. The inflation rate 

follows closely, exerting a significant impact on nearly all targets (Y1, Y2, Y4 and Y5), suggesting that economic 

conditions, such as growth slowdowns, unemployment, and exchange rate volatility, affect not only financial indicators, 

but also health outcomes and population mobility patterns. 

In addition, mobility-related variables such as public transport mobility, outdoor space visits, and retail and leisure 

mobility emerge as important indicators, especially for Y4 and Y5, underscoring the role of population movement in 

explaining economic changes and behavioral responses during public health crises or other large-scale disruptions. 

Meanwhile, variables such as hospital bed occupancy and residential mobility demonstrate a moderate level of 

importance, reflecting that healthcare capacity and living environments remain relevant, although not always dominant, 

in different crisis scenarios. 

4.1.3. Optimal Control Strategy Determination through XGBR–NSGA-II and SHAPPI Integration 

Finally, to determine optimal control strategies in pandemic modelling, this study proposes an innovative integration 

of the SHAPPI method into the XGBR–NSGA-II framework. The process begins with training an optimized XGBR 

model, in which hyperparameter tuning is performed using PSO to enhance predictive performance on six key 

pandemic-related targets. 

The key innovation lies in the role of SHAPPI a hybrid explainability method that combines SHAP and PI which serves 

as an interpretability layer between the predictive model and the optimization process. As illustrated in Algorithm 1, 

SHAPPI is used to calculate the feature-weighted contributions for each objective function. These weights are 

aggregated into directed fitness functions per target, which are then combined into a multi-objective function and 

optimized using the NSGA-II. 

Subsequently, the optimized XGBR model is integrated into the NSGA-II framework to generate Pareto-optimal 

solutions that balance trade-offs among the dimensions of health outcomes or epidemiology (Y1–Y3), economic 

fluctuations (Y4–Y5), and mobility changes (Y6) collectively representing the policy trilemma in crisis situations. As 

shown in figure 6, the Pareto front presents a set of non-dominated solutions that reflect optimal compromises, enabling 

the formulation of adaptive policies such as determining the timing of mobility restrictions while maintaining public 

health and economic resilience. 
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Figure 4. XGBR: The Pareto Front results from the NSGA-II Algorithm’s multi-objective optimization issue for 

reducing health outcomes, economic fluctuations, and mobility changes. 

The optimal decision variable values derived from the XGBR–NSGA-II model are presented in table 6. The most 

influential factors are Minimum Wage (X12, 1.290) and Social Assistance Programs (X11, 0.656), both of which play 

a critical role in strengthening economic resilience during crises. Moderate contributions are observed for the Monetary 

Policy Rate (X10), Public Transport Mobility (X7), Residential Mobility (X8), and Inflation Rate (X9). In contrast, 

health-related characteristics such as the Immunization Rate (X3) and the availability of the healthcare workforce (X2) 

exert minimal influence, while the Visit in Parking Space (X6) emerge as the least significant variable. 

Table 6. XGBR: Setting Decision Variables Values to Provide the Most Optimum Solution. 

Feature Name Feature Value 

𝑿𝟏𝟐 Minimum Wage 1.290482 

𝑿𝟏𝟏 Social Assistance Programs 0.655766 

𝑿𝟏𝟎 Monetary Policy Rate 0.144302 

𝑿𝟕 Public Transport Mobility 0.103463 

𝑿𝟖 Residential Mobility 0.097496 

𝑿𝟗 Inflation Rate 0.086446 

𝑿𝟒 Retail and Leisure Mobility 0.031760 

𝑿𝟓 Essential Services Mobility 0.027200 

𝑿𝟏 Hospital Bed Occupancy 0.018008 

𝑿𝟑 Vaccination Converage  0.012424 

𝑿𝟐 Healthcare Workforce Availability 0.011807 

𝑿𝟔   Visit in Parking Space 0.001350 

The convergence behaviour of the optimization process is evaluated and visualized in figure 7. Comparisons between 

SHAPPI, SHAP, and PI (figure 7(a) – figure 7(c)) show that SHAPPI achieves the fastest and most stable convergence, 
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reducing Δf from 101 to near-zero within 50 generations, with the shortest computation time of 10.50 second. SHAP 

converges more slowly with oscillations, while PI shows the slowest and most unstable convergence behaviour. 

 
 

(a) Convergence of NSGA-II with SHAPPI (b) Convergence of NSGA-II with SHAP 

 

(c) Convergence of NSGA-II with PI 

Figure 5. Comparison of NSGA-II convergence using SHAPPI, SHAP, and PI. 

4.2. Discussion 

This study offers two main innovations compared to previous optimization approaches in a body of research that 

employed NSGA-II, SPEA-II, or MOGWO [73], [74], [75], [76]. First, we propose SHAPPI, a hybrid explainability 

method that integrates SHAP and PI to address the limitations of each technique and generate more stable and 

interpretable feature importance rankings. Second, SHAPPI is directly embedded into the multi-objective optimization 

process using NSGA-II, enabling the development of adaptive and data-driven policy recommendations. 

The findings indicate that crises extend beyond public health concerns to generate substantial shocks to economic and 

mobility indicators. Feature importance analysis reveals that economic volatility—particularly in exchange rates and 

financial markets—is strongly influenced by changes in public and workplace mobility patterns, as well as policy 

interventions. For example, mobility restrictions have been shown to intensify pressures on monetary stability, while 

shifts in workplace productivity trigger rapid responses in capital markets. Importantly, these dynamics should not be 

interpreted as specific to a single crisis; instead, they reflect broader systemic patterns observable during pandemics, 

natural disasters, and sociopolitical instabilities. Consequently, the results underscore the inherent vulnerability of 

socio-economic systems to sudden disruptions and highlight the necessity of developing resilience-oriented strategies 

to mitigate the multidimensional impacts of future crises. 

SHAPPI is validated through both theoretical formulation and empirical evaluation. As described in the mathematical 

theorem, this method combines the local interpretability of SHAP with the global robustness of PI into a unified scoring 

scheme. From an empirical perspective, SHAP has previously been proven effective in improving model transparency 

and operational insights when applied to real-world datasets capturing health, economic, and mobility disruptions 

induced by large-scale crises, including pandemics, epidemics, and other public health emergencies [77]. The 

comparative experiments that we conducted, as presented in the corresponding figures, confirm that SHAPPI produces 

more stable and balanced scores of importance of characteristics compared to SHAP or PI individually.  

Furthermore, the sensitivity of SHAP to variation in iterations in complex models has been a recognized concern in the 

literature, reinforcing the need for robustness testing and consistent interpretations, as noted by [77]. By integrating 
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SHAPPI into the NSGA-II optimization framework, our approach not only improves interpretability in trade-off 

solutions but also accelerates and stabilizes the convergence process. This contribution aligns with comparative 

explainability studies that highlight differences in interpretability and visualization results, helping practitioners select 

the most appropriate tool for their application context. The general framing of our approach ensures its applicability in 

analyzing health, economic, and mobility impacts from diverse crisis scenarios, rather than being confined to a single 

disease context [78]. 

4.2.1. Generalizability and Policy Relevance 

The proposed framework, although tested using Indonesian data sets, is adaptable to international application by 

substituting localized indicators such as exchange rates, mobility trends, or health metrics. Incorporating diverse 

pandemic modeling approaches allows generalization between geographies. This structure allows scenario-based 

simulations and aligns with locally available data formats, supporting applicability for urban health governance across 

regions. 

4.2.2. Limitations 

This study assumes static time series windows and does not consider real-time data drift. In addition, the SHAPPI 

method used in this research is currently limited to structured tabular data and has not yet been fully optimized for 

dynamic time series analysis. This study focuses on a regression-based prediction approach, rather than classification 

or forecasting, aiming to estimate continuous values of the observed indicators. Another limitation is that the model 

was trained and tested exclusively on data from the Jakarta region. Therefore, future studies are encouraged to conduct 

external validation using data from other regions in Indonesia to evaluate the model’s generalizability. 

5. Conclusion 

This study presents a hybrid framework that combines XGBoost Regression (XGBR) with NSGA-II for multi-objective 

pandemic modeling, enhanced by the SHAPPI interpretability method. By integrating SHAP and Permutation 

Importance, SHAPPI provides stable and interpretable feature attributions to support data-driven decision-making in 

outbreak scenarios. The results reveal that fiscal and socioeconomic variables—such as minimum wage, social 

assistance, and interest rates—have a stronger influence on policy trade-offs during health crises than healthcare 

capacity alone. Features such as immunization coverage, population mobility, and inflation consistently rank highest, 

underscoring the importance of integrative policies that extend beyond health infrastructure. In summary, economic 

support and mobility regulation appear to be more impactful than solely expanding health services. The proposed 

framework effectively balances predictive performance, interpretability, and multi-objective optimization. Although 

the model was demonstrated using data from a specific region, it can be adapted for broader applications in diverse 

geographic and epidemiological contexts by adjusting local variables. Furthermore, embedding SHAPPI into the 

optimization loop improves transparency and trust, making the framework suitable for real-time, explainable, and 

adaptive policymaking in both health and economic crisis management. 

5.1. Future Research Directions 

Future enhancements include incorporating streaming data and adaptive learning for dynamic modeling. 

Interpretability can be advanced through reinforcement learning–driven explanations or real-time SHAPPI scoring. 

Comparative evaluations with MOEA/D or SPEA2 are necessary for robustness assessment. To further demonstrate 

the adaptability of the framework in various types of crises, future work should explicitly validate the model using data 

sets from multiple outbreak scenarios, such as SARS, MERS or H1N1, as well as simulated epidemic and other large-

scale crisis scenarios. This approach will help assess the performance of the model in various epidemiological and 

socioeconomic conditions, ensuring its applicability beyond a single disease context. 

The framework may also be extended to other forms of crises, such as natural disasters or socioeconomic shocks, by 

adjusting input variables to reflect the nature of the disruption. External validations in diverse regions and evaluation 

under data drift remain essential to improve model generalizability and reduce overfitting. By maintaining a general 

crisis-oriented design, the methodology can serve as a decision support tool for policymakers to manage health, 

economic, and mobility challenges in a wide range of future emergencies. 
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