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Abstract

Pandemic and epidemic events underscore the challenges of balancing health protection, economic resilience, and mobility sustainability.
Addressing these multidimensional trade-offs requires adaptive and data-driven decision-support tools. This study proposes a hybrid framework
that integrates machine learning with multi-objective optimization to support evidence-based policymaking in outbreak scenarios. Six key
indicators—confirmed cases, disease-related mortality, recovery count, exchange rate, stock index, and workplace mobility—were predicted
using eight regression models. Among these, the XGBoost Regressor consistently achieved the highest predictive accuracy, outperforming other
approaches in capturing complex temporal and socioeconomic dynamics. To enhance interpretability, we developed SHAPPI, a novel method
that combines Shapley Additive Explanations (SHAP) with Permutation Importance (PI). SHAPPI generates stable and meaningful feature
rankings, with immunization coverage and transit station activity identified as the most influential factors in all domains. These importance scores
were subsequently embedded into the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to construct Pareto-optimal solutions. The
optimization results demonstrate transparent trade-offs among health outcomes, economic fluctuations, and mobility changes, allowing
policymakers to systematically evaluate competing priorities and design balanced intervention strategies. The findings confirm that the proposed
framework successfully balances predictive performance, interpretability, and optimization, while providing a practical decision-support tool for
epidemic management. Its generalizable design allows adaptation to diverse geographic and epidemiological contexts. In general, this research
highlights the potential of hybrid machine learning and metaheuristic approaches to improve preparedness and policymaking in future health and
socioeconomic crises.
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1. Introduction

Pandemic events have significantly disrupted global health systems, economies, and social structures [ 1], [2]. In various
regions, even after official relaxation of community activity restrictions, fluctuating trends in confirmed cases and
disease-related mortality have persisted. Historical records from major outbreaks worldwide show that millions of
confirmed cases, hundreds of thousands of fatalities, and widespread vaccination campaigns can occur within relatively
short timeframes. Such resurgence patterns highlight the ongoing challenges posed by emerging variants and evolving
disease dynamics.

Balancing public health protection with economic resilience remains a complex undertaking. Although Non-
Pharmaceutical Interventions (NPIs), such as community activity restrictions and mobility control measures, have been
effective in controlling disease transmission [3], they often disrupted mobility and economic activity [4], [5], leading
to job losses and social distress [6], [7] This reflects the inherent trade-offs between pandemic containment and the
continuity of socioeconomic functions that policymakers must carefully navigate.

To support more balanced policies, predictive models are needed to evaluate health, economic, and mobility outcomes
simultaneously [8]. Traditional epidemic models, such as SIR or SEIR, although foundational [9], lack the flexibility
to account for complex interdependencies across domains [10], [11]. In contrast, machine learning and metaheuristic
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optimization techniques have shown strong capabilities in modeling nonlinear high-dimensional relationships [12],
[13], enabling the optimization of competing objectives through algorithms such as GA, PSO, and SA [14], [15], [16].

However, interpretability remains a key challenge, especially in multi-objective settings within low- and middle-
income countries [17], [18], [19], [20]. To bridge this gap, this study proposes a hybrid framework that integrates
XGBoost, PSO, SHAP, Permutation Importance (PI), and NSGA-II to predict six key indicators and generate
interpretable, policy-relevant recommendations. Although NSGA-II is widely used, its scalability poses challenges in
many-objective contexts. Recent advances, such as boundary protection indicators [21], ensemble frameworks
combining AdaBoost and K-means clustering [22], and dominance-controlled mechanisms [23], [24], underscore the
importance of adaptive and interpretable optimization strategies for future pandemic modeling. To date, few studies
have applied this hybrid approach in the Indonesian context [25]. Consequently, this research contributes to the
literature by developing a comprehensive model that unifies machine learning, metaheuristics, and Explainable
Artificial Intelligence (XAI) — providing a robust foundation for data-driven decision making to manage pandemic
dynamics.

The main contributions of this study can be summarized as follows. We develop a comprehensive prediction framework
based on the XGBoost Regressor (XGBR) that integrates multiple dimensions of pandemic impact, including public
health indicators (confirmed cases, disease-related mortality, and recovery count), economic fluctuations (currency
change rate and stock index movement) and mobility changes (workplace activity). To enhance predictive performance,
the model employs Particle Swarm Optimization (PSO) for hyperparameter tuning, enabling robust parameter
adjustment across these diverse targets. Beyond accuracy, interpretability is emphasized through the use of PI, which
identifies the most influential features shaping model outcomes. To further strengthen explainability, we introduce
SHAPPI, a novel hybrid method combining SHAP and PI to generate stable and interpretable feature importance scores,
thus overcoming the limitations of each technique in isolation. Finally, the Non-dominated Sorting Genetic Algorithm
I (NSGA-II) is applied to extend the framework into a multiobjective optimization setting, allowing the identification
of Pareto-optimal trade-offs across health, economic, and mobility objectives. Collectively, these contributions
establish a hybrid, interpretable, and optimization-driven framework that provides a valuable decision support tool for
policymakers to navigate the complex challenges of pandemic management.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive literature review. Section 3
describes the materials and methods used in the study. Section 4 presents the experimental results, discusses the
findings, and compares them with related work. Finally, Section 5 concludes the paper with key insights and outlines
potential directions for future research.

2. Literature Review

2.1. Hybrid Machine Learning and Metaheuristic Approaches in Pandemic Modeling

Research on epidemic and pandemic modeling has advanced through the integration of Machine Learning (ML) and
multi-objective metaheuristic algorithms. The SARS outbreak marked a pivotal milestone, as mathematical models
were used to analyze transmission, forecast spread, and evaluate control strategies [26]. SARS insights informed
subsequent modeling of MERS and COVID-19, demonstrating the applicability of epidemic modeling principles in
different diseases. Hybrid ML—metaheuristic approaches further enhance predictive capability by capturing the
complex interplay between health, mobility, and economic factors. In outbreak contexts such as MERS [27], HIN1
[28], ML models including Long-Short-Term Memory (LSTM) [29], Convolutional Neural Networks (CNN) [30], and
Random Forest (RF) [31], have shown strong performance in forecasting infection trends, mortality, and spatial
dynamics from temporal and spatial data.

Beyond predictive models, hybrid strategies using metaheuristics such as the non-dominated classification genetic
algorithm II (NSGA-II) [32], [33], and PSO [34] have optimized multiple objectives simultaneously, including
minimizing infection rates, reducing mortality, allocating limited healthcare resources, and mitigating economic
disruptions. Studies such as [35], [36] emphasize the value of these frameworks to balance trade-offs under crisis
conditions. Moreover, interpretability tools such as SHAP [32]. improve model transparency, while real-time data
integration improves responsiveness to rapidly evolving outbreak dynamics.
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2.2. Regression Modeling with Machine Learning: Development and Evaluation

Major pandemics including SARS, MERS, and HIN1 have disrupted healthcare systems, economies, and human
mobility, underscoring the multidimensional nature of epidemic impacts. Economically, recessions, unemployment,
and shifts in consumer behaviour were observed, with targeted recovery policies proposed by Rathnayaka et al. [37]
and sustainability-oriented strategies highlighted by Piccarozzi et al. [38] From the health perspective, Clemente et
al.[39] noted the exacerbation of inequalities and pressure on health infrastructure, while Jordan et al. [40] demonstrated
how optimization techniques improved vaccine distribution and healthcare resource allocation. Mobility research, such
as that by Zhang et al. and Mesfin et al. [41], [42], explored the effects of movement restrictions, while Biswas et al.
[43] recommended adaptive, data-driven restriction policies.

Recent contributions also highlight the importance of robust and hybrid modelling frameworks. Chaerani et al. [44]
discussed robust optimization in addressing uncertainty for achieving Sustainable Development Goals (SDGs) during
crises, and Jamshidi et al. [45] reviewed hybrid deep learning models for pandemic forecasting. Complementary studies
such as Rabaan et al. [27] on MERS-CoV dynamics, Costa et al. [28], comparing HIN1 and COVID-19, and Fajardo
et al. [46] applying mathematical and ML models across outbreaks illustrate that epidemic modeling principles are
transferable beyond a single disease. More recently, Zhang et al. [47] developed a universal outbreak risk prediction
tool validated across multiple datasets, while Bedi et al. [48] reviewed the integration of Al with mechanistic
epidemiological modeling.

Additional studies have focused on robust optimization and hybrid modelling. Chaerani et al. [44] discussed the
relevance of robust optimization in addressing uncertainty in achieving SDGs during the pandemic. Jamshidi et al. [45]
reviewed the application of hybrid deep learning models for forecasting pandemic trends, combining statistical rigor
with Al flexibility to manage complexity and uncertainty. While significant progress has been made in applying hybrid
models and incorporating real-time data, gaps remain. Many existing models focus on single-objective optimization or
lack interpretability. There is a need for more comprehensive approaches that integrate explainable Al, real-time
socioeconomic indicators, and multi-objective metaheuristics for more robust and actionable pandemic response
strategies.

Collectively, these studies demonstrate that hybrid machine learning and metaheuristic approaches are broadly
applicable to epidemic modelling, offering improvements in predictive accuracy, interpretability, and decision-making
under uncertainty. This body of literature confirms that the proposed framework is validated for broader application
across diverse epidemic scenarios.

3. Methodology

Figure 1 illustrates the methodological framework adapted from Pan et al. [32], consisting of five main stages: (1) data
collection, (2) data pre-processing, (3) regression modeling, (4) multi-objective optimization, and (5) policy
recommendation. The dependent variables comprise six key indicators, while the independent variables are classified
into health, mobility, and economic factors. Pre-processing includes min-max normalization. Eight regression
algorithms are applied: RFR, GBR, XGBR, SVR, DTR, ABR, KNN, and LR. Hyperparameter tuning is performed
using PSO with parameters n (number of particles), d (rolling window depth), s (smoothing parameter), 1 (lag) and w
(moving average window). The SHAPPI method, a combination of SHAP and PI, is applied to compute stable and
consistent feature importance weights. These weights are integrated into the NSGA-II algorithm to generate Pareto-
optimal solutions. Model performance is evaluated using RMSE, MAE, MAPE, and R-squared metrics. Each phase of
the model is detailed in the following sections.
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Figure 1. Methodology for implementing the recommended research.

3.1. Data Collection

This study employs the Jakarta pandemic dataset, collected during a pandemic period, which encompasses indicators
related to health outcomes, economic fluctuations, and mobility changes that are pertinent to outbreak modeling. The
dataset is structured to facilitate predictive modeling and multi-objective optimization, while remaining generalizable
beyond a specific disease or timeframe. The independent variables (X) are organized into three categories: (1) Health
outcomes, comprising vaccination coverage, healthcare workforce availability, and hospital bed occupancy, obtained
from official national databases and the Central Bureau of Statistics (BPS); (2) Economic fluctuations, including the
inflation rate and monetary policy rate sourced from the Central Bank and Yahoo Finance, as well as social assistance
programs and minimum wage obtained from BPS; and (3) Mobility changes, derived from Google Mobility Reports,
which capture variations in public activity across Jakarta. As presented in table 1, the Shapiro—Wilk test (p < 0.001)
confirms that all variables deviate from normal distribution; consequently, the data are summarized using the median
and Interquartile Range (IQR) to provide a more robust representation of central tendency and variability.

Table 1. Characteristics of features in the dataset.

Category Feature Description Variable Median IQR [Min, Max] v:;:le
Health outcomes Hospital Bed Occupancy X1 23,780.00 699.00 [23,081.0,23,780.0] <0.001
Health outcomes Healthcare Workforce X, 56,853.00 17,546.00  [45,552.0, 63,098.0] <0.001

Availability
Health outcomes Vaccination Coverage X3 1,898,567.00 10,367,980.00 [0.0, 10,805,878.0] <0.001
Mobility changes Retail and Leisure X, -24.00 20.00 [-68.0, 10.0] <0.001

Mobility
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Essential Services

Mobility changes Mobility X5 -2.00 15.00 [-46.0, 34.0] <0.001
Mobility changes Visit in Parking Space X -42.00 37.00 [-96.0, 31.0] <0.001
Mobility changes  Public Transport Mobility X5 -36.00 18.00 [-79.0, 6.0] <0.001
Mobility changes Residential Mobility Xg 10.00 6.00 [-1.0, 34.0] <0.001
Economic Inflation Rate Xo 1.66 1.27 [0.91, 4.61] <0.001
fluctuations

Economic .

fluctuations Monetary Policy Rate Xi0 3.50 0.50 [3.5,4.75] <0.001
Economic Social Assistance X1 529e+11 4.92e+11  [3.97e+10,5.31e+11]  <0.001
fluctuations Programs

Economic .. [4,267,349.0,

fAuctuations Minimum Wage X2 4,416,186.00  374,505.00 4,641.854.0] <0.001

To ensure data quality and representativeness, the selected variables reflect empirically grounded indicators that are
widely used by national agencies. Health-related data provide information on pandemic response capacity, while
economic and mobility indicators offer consistent metrics to assess broader societal impact. DKI Jakarta, as Indonesia’s
capital and early epicenter of the pandemic, maintains the most comprehensive and timely data infrastructure. Its data
sets are routinely used by ministries for the formulation of national-level policies. Therefore, while the study focuses
on Jakarta, its data serve as a valid national reference to model the response to the pandemic and inform socioeconomic
recovery strategies.

3.2. Data Pre-processing

The variables X are Min Max scaled in the pre-processing phase. The scaler is a method used to adjust the scale of a
dataset [49]. Scalers are helpful when you have data on different scales and want to customize it to make it easier to
analyze. This method adjusts the data scale by changing the data values to values between 0 and 1 [50]. Then, Scaler
compares the data more efficiently and avoids bias due to different scales [51]. The data will then be split using the K-
fold cross-validation process. Cross-validation of K-Folds is a data validation technique used to evaluate the
performance of machine learning models [52]. Cross-validation of K times was used to assess the consistency of the
model [53]. This method divides the training data into k parts or k times and uses k=3 characteristics to train the model
and a factor to test the model. This procedure is performed k times, and each segment is used as test data once. The
outcome is the average precision of the k tests [52].

3.3. Regression Modeling with Machine Learning: Development and Evaluation

This study applies eight regression-based machine learning models RFR, GBR, XGBR, SVR, DTR, ABR, KNR, and
LR to predict six key pandemic indicators: confirmed cases (Y 1), disease-related mortality (Y?2), recovery count (Y3),
diff-idr (Y4), diff-ihsg (Y5), and workplace mobility (Y6). Each target is treated independently to allow tailored
hyperparameter tuning across health, economic, and mobility dimensions. Avoid combining SI and CGS units, such as
current in amperes and magnetic field in oersted’s. This often leads to confusion because equations do not balance
dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.

Each model has specific strengths: ensemble methods like RFR, GBR, and XGBR capture complex patterns and offer
high accuracy [54], [55]; SVR handles high-dimensional data well [56]; DTR provides interpretability [57]; ABR
focuses on hard-to-predict samples [58]; KNR captures local patterns [59]; and LR offers a simple baseline [3],

To improve the performance and generalizability of the model, hyperparameter tuning was performed using the PSO
algorithm [32]. PSO is recognized for its efficiency in exploring large solution spaces with relatively low computational
complexity [60]. The tuning process begins by initializing a population of particles, where each particle represents a
candidate solution, a specific combination of hyperparameters. Each particle evaluates its position based on an
objective function, typically the prediction error, assessed using metrics such as R-squared (R2), RMSE, MAE and
MAPE.
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The model in this study was validated using consistent three-fold cross-validation throughout both the modeling and
optimization phases to mitigate overfitting and enhance generalizability. Although an independent out-of-sample test
set was not available, such cross-validation-based evaluation is a well-established practice in predictive modeling using
historical data [61], [62]. K-fold cross-validation has been shown to yield favorable results even in time series settings
when adapted appropriately [63]. Furthermore, consistent cross-validation remains a reliable alternative when blocked
or time-sensitive strategies are infeasible due to data limitations [64]. Although cross-validation may not capture all
forms of overfitting - especially in highly complex models - its integration with hyperparameter tuning, such as the
PSO optimization used in this study, represents a multifaceted approach recommended for robust model evaluation
[32].

The final evaluation metrics, including MAE, RMSE, MAPE and R2, were calculated in the holdout test set to assess
the model performance. To ensure robustness and avoid overfitting, three-fold cross-validation is used [32], in which
each configuration is evaluated on three different data subsets and the results are averaged. During the iterative process,
PSO updates the velocity and position of each particle by learning from the best-performing individuals and the best
global solution in the population. This enables the swarm to gradually converge toward optimal hyperparameter
configurations for each model. The final regression models obtained through PSO tuning are then thoroughly evaluated
to ensure stable, accurate, and reliable prediction performance across various pandemic-related outcomes.

3.3.1. The Proposed SHAPPI: A Hybrid Feature Importance Method Combining SHAP and PI

This study introduces SHAP—Permutation Importance (SHAPPI) a hybrid explainability method that integrates the
local interpretability of SHAP values with the global robustness of PI. While SHAP quantifies the marginal contribution
and polarity of each feature based on Shapley values from cooperative game theory [65], [66], PI evaluates the
sensitivity of model performance to feature perturbations through random permutation [67]. Each method has its
strengths: SHAP offers detailed information on individual predictions, while PI reflects the impact of global features.
However, each also has limitations when used independently.

SHAPPI addresses these limitations by combining both approaches into a unified scoring mechanism. It produces three
outputs per feature: (1) the polarity score n, which shows whether the impact of a feature is positive or negative; (2)
the error score e, derived from permutation-based performance degradation; and (3) the aggregate score a, calculated
by normalizing and integrating the SHAP and PI scores [68]. The result is a balanced, interpretable, and robust
importance score.

The SHAPPI procedure. Given a set of characteristics x, a target y, and a model m, the algorithm calculates the SHAP
value sf'and the PI score pf for each characteristic f. These are normalized and combined to produce the final importance
score ay A normalization step ensures comparability across features, with final weights rescaled to sum to one. These
weights are stored in a dictionary for use in model interpretation or optimization. The complete pseudocode and
implementation are detailed in the availability section.

3.3.2. Mathematical Formulation of SHAPPI Values

SHAPPI combines the local interpretability of SHAP values and the global robustness of PI into a unified feature
importance score. SHAP assigns a contribution score to each feature by averaging its marginal effect across all possible
subsets of features. Let N be the set of all features, and f(x) the prediction of the model. The SHAP value for feature f,
denoted sf, is calculated using Formula (1):

o ISILAN] —|S] — 1)!
& IN!
SEN\{f}
SHAP values satisfy key properties of cooperative game theory, including efficiency, symmetry, and additivity [65],
[69]. PI quantifies the sensitivity of a model to a feature by measuring performance degradation after random
permutation. Given the original model performance r and the performance after the permutation feature f, denoted rf,
the PI is calculated using formula (2):

VIORTHESIO] (1)
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In Formula (2), this score can be normalized using the Min-Max scaling to align with the SHAP scores. The SHAPPI
score for a feature f, denoted ay, integrates both SHAP and PI scores to produce a balanced importance estimate. This
hybrid score is defined in formula (3):

S;+pr
ap =L 3)

In Formula (3) represents $¢ and py are the normalized SHAP and PI scores, respectively.

Theorem 1 (Properties of SHAPPI). SHAPPI combines the strengths of SHAP and PI by inheriting the interpretability
of the former and the empirical robustness of the latter. Through this integration, SHAPPI enhances the stability in
feature attribution by uniting two complementary methods that address different aspects of explainability. It mitigates
bias by reducing the susceptibility of PI to categorical dominance while simultaneously overcoming the model-agnostic
limitations often associated with SHAP. As a result, SHAPPI offers more comprehensive insights into the relevance of
features by capturing both local and global perspectives, thereby providing stakeholders with a balanced and reliable
interpretability framework.

3.4. Multi-Objective Optimization Using NSGA-II with SHAPPI

This section presents a multi-objective optimization framework using NSGA-II to model trade-offs among six
pandemic-related outcomes, guided by SHAPPI-derived feature weights. The optimization seeks to minimize adverse
outcomes (e.g., confirmed and mortality cases) and maximize favourable indicators (e.g., recovery and workplace
mobility).
3.4.1. Objective Definition
Each objective function Fj is formulated as a weighted sum of input features xi using SHAPPI importance scores w; ;
n

F = wiji-x, Jj=1,..,6 4)
i=1
Formula (4) represents each individual objective function F;, where the summation captures the contribution of each
feature x;, weighted by its corresponding SHAPPI importance w; ; for the j-th objective (e.g., positivity rate, mortality,
economic indicators, etc.). The vector of objectives is:

Fx) = [F1(x), F2(%), ..., Fs (x)] )

Formula (5) defines the multi-objective function vector, with each component representing a distinct target metric to
be minimized simultaneously within the optimization process.

3.4.2. Optimization Formulation

The goal is to minimize the six objectives subject to bounds x; € [x;, x,, ], where (x; = 0) and x,, is the maximum
observed value for each feature. The formulation (6) is:
Minimize: F(x)

(6)

Subjectto: x; € [x;,x,], Vi=1,..,n

3.4.3. NSGA-II Implementation

The NSGA-II is applied with the following configuration: population size = 500, crossover probability = 0.5, mutation
probability = 0.2, and 100 generations. Simulated Binary Crossover (SBX) and Polynomial Mutation (PM) are used
for genetic operations. Tournament selection guides evolutionary progression [32].

3.4.4. Model Components.

The formulation of the model is structured around three main components: objective functions, decision variables, and
model parameters with their corresponding constraints. These components work together to capture the complexity of
pandemic dynamics across health, economic, and mobility dimensions. The objective functions (table 2) cover health
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indicators such as confirmed cases, disease-related, and recovery count, along with economic indicators including
exchange rate fluctuations and stock index movements, and workplace mobility.

Table 2. Objective Functions

Feature Name Feature
Y, Confirmed Cases
Y, Disease-related mortality
Y3 Recovery Count
Y, Difference in IDR Exchange Rate (diff-idr)
Y5 Difference in IHSG Index (diff-ihsg)
Ye Workplace Mobility

The decision variables (table 3) represent controllable factors such as healthcare capacity, vaccination coverage,
different types of mobility, and socio-economic indicators like inflation, monetary policy, social assistance, and
minimum wage.

Table 3. Decision Variables

Feature Name Feature
X, Hospital Bed Occupancy
X, Healthcare Workforce Availability
X3 Vaccination Coverage
Xy Retail and Leisure Mobility
X5 Essential Services Mobility
Xe Visit in Parking Space
X5 Public Transport Mobility
X3 Residential Mobility
X, Inflation Rate
Xi0 Monetary Policy Rate
X1 Social Assistance Programs
X1z Minimum Wage

Parameters and constraints (table 4) ensure that the input values remain within realistic limits, define the weighting of
each objective, and provide an evaluation function to assess Pareto-optimal solutions using NSGA-II. This formulation
enables the model to capture the complexity of pandemic dynamics while producing balanced trade-offs between
health, economic, and mobility objectives.

Table 4. Model Parameters and Constraints

Parameter and Constraints  Description

X] Lower bounds for input variables, set to zero in this study
Xy Upper bounds for input variables, defined as the maximum values in dataset X

Yweights Weight dictionary for each target variable (Y1 to Ye) used in weighted fitness computation.
Fy ¢ Weighted fitness function for each objective function Fy o computed as the sum of feature

F Matrix containing all objective functions to be optimized using NSGA-II.
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F eval Evaluation metric for analyzing Pareto-optimal solutions, computed as the product of selected
objective function pairs.

3.4.5. Pareto Analysis

NSGA-II yields a Pareto front of trade-off solutions X* and their corresponding objective values F*. Trade-offs are
evaluated using a composite measure:

Fevalex'Fy ™)

In Formula (7) represents F, and Fy are selected pairs of objectives. Lower values of F,,, suggest better compromises,
supporting multi-criteria decision-making.

3.4.6. Model Parameters and Constraints

All parameters and variable definitions are detailed in table 4. The model uses SHAPPI scores to ensure optimization
is interpretable and data-driven.4. Results and Discussion

4. Results and Discussion

4.1. Result

4.1.1. Regression Model Performance and PSO-Based Optimization for Pandemic Prediction

The proposed model demonstrated strong predictive performance across multiple key indicators spanning public health,
economic stability, and population mobility. For health-related metrics, it accurately predicted positivity rates, disease-
related mortality, and recovery counts, enabling timely and informed outbreak management. Economic indicators,
including currency exchange rate fluctuations and stock market index changes, were also forecasted with high accuracy,
providing valuable insights for balancing economic resilience with public health interventions.

Additionally, the model effectively captured mobility trends during outbreak periods, such as changes in workplace
mobility and transportation activity, which are critical for assessing the effectiveness of intervention measures. To
achieve these results, eight regression models RFR, GBR, XGBR, DTR, SVR, KNN, ABR, and LR were implemented
to predict six key indicators: confirmed cases (Y1), disease-related mortality (Y2), recovery count (Y3), diff-idr (Y4),
diff-ihsg (Y'5), and workplace mobility (Y6). Following the configuration by Pan et al. [32], the hyperparameter search
space includes: number of estimators (n) within [5, 50], tree depth (d) within [5, 50], minimum data for split (s) in [2,
50], leaf size (1) in [1, 20], and rolling time window size (w) in {3, 5, 7}. The rolling time window technique enables
dynamic modelling of temporal dependencies by capturing short-term trends and maintaining the sequential integrity
of the data [70], [71]. This method ensures that predictions are consistently based on the most recent information,
allowing the model to respond effectively to sudden changes and evolving patterns [72].

To further enhance predictive accuracy, the window size is treated as a tuneable hyperparameter. Optimization is
performed using PSO, a metaheuristic algorithm recognized for its capability in efficiently navigating complex search
spaces and achieving rapid convergence [32]. The comparative results presented in figure 2 demonstrate the superiority
of PSO over other tuning methods such as Genetic Algorithm, Grid Search, and Random Search highlighting its
robustness across various prediction targets.
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Model performance is evaluated using five metrics: R, RMSE, MAE, MAPE, and MSE, with a 3-fold cross-validation
approach. As shown in figure 3, XGBR consistently achieved the lowest RMSE rank across all prediction targets.
Statistical validation using the Friedman test yielded a p-value of 0.00011, indicating significant differences among
models, with XGBR outperforming others in nearly all prediction tasks.

Final Adjusted Average RMSE Rank per Model (XGBR as Best)

AdaBoost

Figure 3. Visualization of the Friedman test results comparing average RMSE ranks across all models for eight target
variables.

The test reveals statistically significant differences in model performance (p < 0.05), confirming that XGBR
consistently achieves superior rankings compared to baseline regressors. While other ensemble methods such as GBR
and RFR also exhibit strong predictive capabilities, XGBR emerges as the most reliable model, with superior
performance across health, economic, and mobility domains. Table 5 confirms that XGBR achieved the lowest error
values such as an RMSE of 0.0126 and a MAPE of 0.0290 for mortality prediction demonstrating its reliability and
generalization capability. Conversely, linear models like LR and weak ensemble methods like AdaBoost exhibit lower
performance, especially for complex targets such as exchange rate and stock index variation. Overall, the PSO-
optimized XGBR model stands out as a strong candidate for supporting pandemic management through accurate and
stable predictions.

Table 5. Overall predictive performance of regression models across six target variables.

No Model Target R-square RMSE MSE MAE MAPE
1 GBR Disease-related Mortality 0.9999 0.0104 0.0001 0.0086 0.0362
2 XGBR Disease-related Mortality 0.9999 0.0126 0.0001 0.0039 0.0290
3 RFR Disease-related Mortality 0.9999 0.0088 0.0001 0.0042 0.0304
4 DTR Disease-related Mortality 0.9999 0.0108 0.0001 0.0049 0.0330
5 SVR Disease-related Mortality 0.9955 0.0678 0.0046 0.0559 0.3789
6 KNN Disease-related Mortality 0.9999 0.0120 0.0001 0.0054 0.0292
7 AdaBoost Disease-related Mortality 0.9977 0.0478 0.0023 0.0360 0.0655
8 LR Disease-related Mortality 0.9819 0.1355 0.0183 0.1027 0.2696
9 GBR Confirmed Cases 0.9904 0.1054 0.0112 0.0495 0.2140
10 XGBR Confirmed Cases 0.9932 0.0889 0.0079 0.0434 0.2302
11 RFR Confirmed Cases 0.9906 0.1045 0.0109 0.0515 0.2464
12 DTR Confirmed Cases 0.9928 0.0912 0.0083 0.0443 0.2149
13 SVR Confirmed Cases 0.7252 0.5646 0.3188 0.2504 0.6194
14 KNN Confirmed Cases 0.9860 0.1273 0.0162 0.0558 0.4823
15 AdaBoost Confirmed Cases 0.8838 0.3670 0.1347 0.2993 2.6489
16 LR Confirmed Cases 0.4668 0.7856 0.6185 0.5605 2.5717
17 GBR Recovery Count 0.9989 0.0128 0.0002 0.0097 0.0217
18 XGBR Recovery Count 0.9999 0.0079 0.0001 0.0041 0.0161




Journal of Applied Data Sciences ISSN 2723-6471

Vol. 6, No. 4, December 2025, pp. 2938-2958 2948
19 RFR Recovery Count 0.9999 0.0130 0.0001 0.0070 0.0127
20 DTR Recovery Count 0.9998 0.0142 0.0002 0.0066 0.0268
21 SVR Recovery Count 0.9944 0.0752 0.0057 0.0610 0.0949
22 KNN Recovery Count 0.9999 0.0114 0.0001 0.0059 0.0244
23 AdaBoost Recovery Count 0.9973 0.0521 0.0027 0.0436 0.1060
24 LR Recovery Count 0.9731 0.1655 0.0274 0.1269 0.2744
25 GBR Diff idr 0.7152 0.5190 0.2694 0.2621 0.4706
26 XGBR Diff idr 0.7612 0.4753 0.2259 0.2329 0.5510
27 RFR Diff idr 0.7122 0.5218 0.2723 0.2690 0.5152
28 DTR Diff idr 0.5899 0.6228 0.3879 0.2917 0.7252
29 SVR Diff idr 0.3716 0.7710 0.5944 0.4328 0.8684
30 KNN Diff idr 0.7136 0.5205 0.2709 0.2547 0.5077
31 AdaBoost Diff idr 0.2648 0.8509 0.7240 0.4716 0.1649
32 LR Diff idr 0.2608 0.8362 0.6992 0.5350 1.2516
33 GBR Diff ihsg 0.6962 0.5431 0.2950 0.3672 1.5172
34 XGBR Diff ihsg 0.6076 0.6173 0.3811 0.3774 1.7117
35 RFR Diff ihsg 0.7071 0.5388 0.2903 0.3577 1.3403
36 DTR Diff ihsg 0.3279 0.8078 0.6526 0.4816 2.0138
37 SVR Diff ihsg 0.3263 0.8088 0.6541 0.5834 1.7768
38 KNN Diff ihsg 0.6693 0.5666 0.3211 0.3658 1.3854
39 AdaBoost Diff ihsg 0.2662 0.8628 0.7444 0.6363 2.4853
40 LR Diff ihsg 0.1075 0.9309 0.8666 0.6969 2.4692
41 GBR Workplaces Mobility 0.9513 0.2319 0.0538 0.1095 0.5384
42 XGBR Workplaces Mobility 0.9593 0.2121 0.0450 0.1033 0.5302
43 RFR Workplaces Mobility 0.9525 0.2224 0.0494 0.1036 0.6280
44 DTR Workplaces Mobility 0.9316 0.2749 0.0756 0.1448 0.6235
45 SVR Workplaces Mobility 0.8607 0.3900 0.1521 0.2180 4.1055
46 KNN Workplaces Mobility 0.9474 0.2411 0.0581 0.1099 0.6103
47 AdaBoost Workplaces Mobility 0.8356 0.4247 0.1803 0.3154 2.5492
48 LR Workplaces Mobility 0.8360 0.4256 0.1812 0.2674 1.2064

4.1.2. Feature Importance Analysis with SHAPPI

To enhance model interpretability, we assess the importance of independent variables using XGBR in combination
with SHAP, PI, and the proposed SHAPPI method. SHAP captures the polarity and marginal contribution of each
feature, while PI measures the sensitivity of model predictions to feature permutation. SHAPPI integrates both
perspectives to provide a more balanced attribution. Figure 4(a) to figure 4(h) present comparative feature importance
visualizations across four target variable scenarios. Each scenario includes a polarity line plot and a stability bean plot.
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The polarity of Y1 (Confirmed Cases) with Y2 (Disease-realted Mortality) using SHAP. P1, and SHAPP! Scores The polarity of Y1 (Confirmed Cases) with Y2 (Disease-realted Mortality) using SHAP. PI, and SHAPPI Scores in Beanplot
0 e e B $
(a) Scenario la: Target Variables Y1 with Y3 (b) Scenario 1b: Beanplot for Y1 with Y3
The polarity of Y2 (Disease-reaited Mortality) with Y1 (Confirmed Cases) using SHAP. Pl. and SHAPPI Scores The polarity of Y2 (Disease-realted Mortality) with Y1 (Confirmed Cases) using SHAP, PI. and SHAPPI Scores in Beanplot
(c) Scenario 2a: Target Variables Y2 with Y1 (d) Scenario 2b: Beanplot for Y2 with Y1
The polarity of Y4 (Diff IDR) with Y5 (Diff IMSG) using SHAP, PI, and SHAPPI Scores The polarity of Y4 (Diff IDR) with Y5 (Diff IHSG) using SHAP, PI, and SHAPP! Scores in Beanplot
(e) Scenario 3a: Target Variables Y4 with Y5 (f) Scenario 3b: Beanplot for Y4 vs Y5

The polarity of Y5 (DI IHSG) with Y6 (Workplaces Mobility) using SHAP, Pl, and SHAPP! Scores The polarity of Y5 (Diff IHSG) with Y6 (Workplaces) using SHAP, PI, and SHAPP| Scores in Beanplot

Score Distribution

(g) Scenario 4a: Target Variables Y5 with Y6 (h) Scenario 4b: Beanplot for Y5 vs Y6

Figure 4. Comparative visualization of feature importance using SHAP, PI, and SHAPPI across four scenarios. Each
row illustrates one scenario with its corresponding lineplot (left) and beanplot (right)

Results indicate that SHAP tends to produce conservative scores cantered near zero, underestimating feature impact.
In contrast, PI highlights dominant features but suffers from high variance, particularly for variables like vaccination
converge and inflation rate. SHAPPI consistently demonstrates moderate and stable importance values (range: 0.05—
0.26), mitigating the extremes of SHAP and PI. In Scenario (1b) and (2b), SHAPPI moderates the inflated effect of
vaccination converge and public transport mobility features observed in PI. In Scenario (3) and (4), SHAPPI effectively
highlights the contribution of economic and mobility-related variables, offering improved interpretability over SHAP’s
underestimation and PI’s volatility.

Figure 5 extends the comparative evaluation of PI, SHAP, and SHAPPI by presenting feature importance rankings for
each target variable Y1 to Y6 in a unified bar plot visualization. This figure provides a clearer understanding of how
individual features contribute to model predictions across various interpretability methods.
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Figure 5. Comparison of Feature Importance Rankings using PI, SHAP, and SHAPPI Methods across Four
Pandemic Prediction Targets.

The results indicate that the vaccination coverage is the most influential factor, consistently ranking highest in multiple
targets, particularly Y1, Y2, and Y5. This highlights the critical role of vaccination coverage in shaping public health
outcomes, as well as socioeconomic behaviors that may be affected during various crisis situations. The inflation rate
follows closely, exerting a significant impact on nearly all targets (Y1, Y2, Y4 and Y5), suggesting that economic
conditions, such as growth slowdowns, unemployment, and exchange rate volatility, affect not only financial indicators,
but also health outcomes and population mobility patterns.

In addition, mobility-related variables such as public transport mobility, outdoor space visits, and retail and leisure
mobility emerge as important indicators, especially for Y4 and Y5, underscoring the role of population movement in
explaining economic changes and behavioral responses during public health crises or other large-scale disruptions.
Meanwhile, variables such as hospital bed occupancy and residential mobility demonstrate a moderate level of
importance, reflecting that healthcare capacity and living environments remain relevant, although not always dominant,
in different crisis scenarios.

4.1.3. Optimal Control Strategy Determination through XGBR-NSGA-II and SHAPPI Integration

Finally, to determine optimal control strategies in pandemic modelling, this study proposes an innovative integration
of the SHAPPI method into the XGBR-NSGA-II framework. The process begins with training an optimized XGBR
model, in which hyperparameter tuning is performed using PSO to enhance predictive performance on six key
pandemic-related targets.

The key innovation lies in the role of SHAPPI a hybrid explainability method that combines SHAP and PI which serves
as an interpretability layer between the predictive model and the optimization process. As illustrated in Algorithm 1,
SHAPPI is used to calculate the feature-weighted contributions for each objective function. These weights are
aggregated into directed fitness functions per target, which are then combined into a multi-objective function and
optimized using the NSGA-II.

Subsequently, the optimized XGBR model is integrated into the NSGA-II framework to generate Pareto-optimal
solutions that balance trade-offs among the dimensions of health outcomes or epidemiology (Y1-Y3), economic
fluctuations (Y4-Y5), and mobility changes (Y6) collectively representing the policy trilemma in crisis situations. As
shown in figure 6, the Pareto front presents a set of non-dominated solutions that reflect optimal compromises, enabling
the formulation of adaptive policies such as determining the timing of mobility restrictions while maintaining public
health and economic resilience.
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Figure 4. XGBR: The Pareto Front results from the NSGA-II Algorithm’s multi-objective optimization issue for
reducing health outcomes, economic fluctuations, and mobility changes.

The optimal decision variable values derived from the XGBR-NSGA-II model are presented in table 6. The most
influential factors are Minimum Wage (X12, 1.290) and Social Assistance Programs (X11, 0.656), both of which play
a critical role in strengthening economic resilience during crises. Moderate contributions are observed for the Monetary
Policy Rate (X10), Public Transport Mobility (X7), Residential Mobility (X8), and Inflation Rate (X9). In contrast,
health-related characteristics such as the Immunization Rate (X3) and the availability of the healthcare workforce (X2)
exert minimal influence, while the Visit in Parking Space (X6) emerge as the least significant variable.

Table 6. XGBR: Setting Decision Variables Values to Provide the Most Optimum Solution.

Feature Name Feature Value
X1z Minimum Wage 1.290482
X11 Social Assistance Programs 0.655766
Xi0 Monetary Policy Rate 0.144302
X5 Public Transport Mobility 0.103463
Xg Residential Mobility 0.097496
Xy Inflation Rate 0.086446
X4 Retail and Leisure Mobility 0.031760
X5 Essential Services Mobility 0.027200
X, Hospital Bed Occupancy 0.018008
X3 Vaccination Converage 0.012424
X, Healthcare Workforce Availability 0.011807
Xe Visit in Parking Space 0.001350

The convergence behaviour of the optimization process is evaluated and visualized in figure 7. Comparisons between
SHAPPI, SHAP, and PI (figure 7(a) — figure 7(c)) show that SHAPPI achieves the fastest and most stable convergence,
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reducing Af from 10! to near-zero within 50 generations, with the shortest computation time of 10.50 second. SHAP
converges more slowly with oscillations, while PI shows the slowest and most unstable convergence behaviour.
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Figure 5. Comparison of NSGA-II convergence using SHAPPI, SHAP, and PI.

4.2. Discussion

This study offers two main innovations compared to previous optimization approaches in a body of research that
employed NSGA-II, SPEA-II, or MOGWO [73], [74], [75], [ 76]. First, we propose SHAPPI, a hybrid explainability
method that integrates SHAP and PI to address the limitations of each technique and generate more stable and
interpretable feature importance rankings. Second, SHAPPI is directly embedded into the multi-objective optimization
process using NSGA-II, enabling the development of adaptive and data-driven policy recommendations.

The findings indicate that crises extend beyond public health concerns to generate substantial shocks to economic and
mobility indicators. Feature importance analysis reveals that economic volatility—particularly in exchange rates and
financial markets—is strongly influenced by changes in public and workplace mobility patterns, as well as policy
interventions. For example, mobility restrictions have been shown to intensify pressures on monetary stability, while
shifts in workplace productivity trigger rapid responses in capital markets. Importantly, these dynamics should not be
interpreted as specific to a single crisis; instead, they reflect broader systemic patterns observable during pandemics,
natural disasters, and sociopolitical instabilities. Consequently, the results underscore the inherent vulnerability of
socio-economic systems to sudden disruptions and highlight the necessity of developing resilience-oriented strategies
to mitigate the multidimensional impacts of future crises.

SHAPPI is validated through both theoretical formulation and empirical evaluation. As described in the mathematical
theorem, this method combines the local interpretability of SHAP with the global robustness of PI into a unified scoring
scheme. From an empirical perspective, SHAP has previously been proven effective in improving model transparency
and operational insights when applied to real-world datasets capturing health, economic, and mobility disruptions
induced by large-scale crises, including pandemics, epidemics, and other public health emergencies [77]. The
comparative experiments that we conducted, as presented in the corresponding figures, confirm that SHAPPI produces
more stable and balanced scores of importance of characteristics compared to SHAP or PI individually.

Furthermore, the sensitivity of SHAP to variation in iterations in complex models has been a recognized concern in the
literature, reinforcing the need for robustness testing and consistent interpretations, as noted by [77]. By integrating



Journal of Applied Data Sciences ISSN 2723-6471
Vol. 6, No. 4, December 2025, pp. 2938-2958 2953

SHAPPI into the NSGA-II optimization framework, our approach not only improves interpretability in trade-off
solutions but also accelerates and stabilizes the convergence process. This contribution aligns with comparative
explainability studies that highlight differences in interpretability and visualization results, helping practitioners select
the most appropriate tool for their application context. The general framing of our approach ensures its applicability in
analyzing health, economic, and mobility impacts from diverse crisis scenarios, rather than being confined to a single
disease context [78].

4.2.1. Generalizability and Policy Relevance

The proposed framework, although tested using Indonesian data sets, is adaptable to international application by
substituting localized indicators such as exchange rates, mobility trends, or health metrics. Incorporating diverse
pandemic modeling approaches allows generalization between geographies. This structure allows scenario-based
simulations and aligns with locally available data formats, supporting applicability for urban health governance across
regions.

4.2.2. Limitations

This study assumes static time series windows and does not consider real-time data drift. In addition, the SHAPPI
method used in this research is currently limited to structured tabular data and has not yet been fully optimized for
dynamic time series analysis. This study focuses on a regression-based prediction approach, rather than classification
or forecasting, aiming to estimate continuous values of the observed indicators. Another limitation is that the model
was trained and tested exclusively on data from the Jakarta region. Therefore, future studies are encouraged to conduct
external validation using data from other regions in Indonesia to evaluate the model’s generalizability.

5. Conclusion

This study presents a hybrid framework that combines XGBoost Regression (XGBR) with NSGA-II for multi-objective
pandemic modeling, enhanced by the SHAPPI interpretability method. By integrating SHAP and Permutation
Importance, SHAPPI provides stable and interpretable feature attributions to support data-driven decision-making in
outbreak scenarios. The results reveal that fiscal and socioeconomic variables—such as minimum wage, social
assistance, and interest rates—have a stronger influence on policy trade-offs during health crises than healthcare
capacity alone. Features such as immunization coverage, population mobility, and inflation consistently rank highest,
underscoring the importance of integrative policies that extend beyond health infrastructure. In summary, economic
support and mobility regulation appear to be more impactful than solely expanding health services. The proposed
framework effectively balances predictive performance, interpretability, and multi-objective optimization. Although
the model was demonstrated using data from a specific region, it can be adapted for broader applications in diverse
geographic and epidemiological contexts by adjusting local variables. Furthermore, embedding SHAPPI into the
optimization loop improves transparency and trust, making the framework suitable for real-time, explainable, and
adaptive policymaking in both health and economic crisis management.

5.1. Future Research Directions

Future enhancements include incorporating streaming data and adaptive learning for dynamic modeling.
Interpretability can be advanced through reinforcement learning—driven explanations or real-time SHAPPI scoring.
Comparative evaluations with MOEA/D or SPEA2 are necessary for robustness assessment. To further demonstrate
the adaptability of the framework in various types of crises, future work should explicitly validate the model using data
sets from multiple outbreak scenarios, such as SARS, MERS or HINI, as well as simulated epidemic and other large-
scale crisis scenarios. This approach will help assess the performance of the model in various epidemiological and
socioeconomic conditions, ensuring its applicability beyond a single disease context.

The framework may also be extended to other forms of crises, such as natural disasters or socioeconomic shocks, by
adjusting input variables to reflect the nature of the disruption. External validations in diverse regions and evaluation
under data drift remain essential to improve model generalizability and reduce overfitting. By maintaining a general
crisis-oriented design, the methodology can serve as a decision support tool for policymakers to manage health,
economic, and mobility challenges in a wide range of future emergencies.
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