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Abstract 

Beef freshness quality is one of the important indicators in ensuring food safety and suitability. However, conventional methods such as manual 

visual inspection and laboratory testing cannot be widely applied in real-time and mass scale. To overcome these challenges, this study proposes 

a meat freshness detection system based on a multimodal approach that combines visual imagery and gas sensor data in a single IoT-based 

framework. This system is designed by utilizing the YOLOv11 architecture that has been optimized using the Adam optimizer. The dataset 

consisted of 540 original beef images, expanded into 1,296 images after augmentation. The model is trained on these augmented images and is 

able to achieve detection performance with a mAP@0.5 value of 99.4% and mAP@0.5:0.95 of 95.7%. As a further improvement, the cropped 

image features from the YOLOv11 model are processed through a combination of the ViT model and CNN to classify the level of meat freshness 

into three classes: Fresh, Medium, and Rotten with an accuracy of 99%. On the other hand, chemical data was obtained from the MQ136 and 

MQ137 gas sensors to detect H₂S and NH₃ levels which are indicators of meat spoilage. Data from visual and chemical data were then combined 

through a multimodal fusion method and classified using the Random Forest algorithm, producing a final prediction of Fit for Consumption, 

Need to Check, and Not Fit for Consumption. This multimodal model achieved a classification accuracy of 98% with a ROC-AUC score 

approaching 1.00 across all classes. While the proposed system achieved very high accuracy, further validation across diverse real-world 

environments is recommended to establish its generalizability. 
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1. Introduction  

Beef consumption in Indonesia continues to increase, but domestic production is still inadequate, causing prices to soar 

and fraudulent practices such as mixing fresh meat with meat that is no longer fit for consumption are rampant [1]. The 

freshness of meat is difficult for the general public to determine because visual inspection is not always accurate, while 

laboratory methods are expensive and time-consuming [2]. According to the World Health Organization, foodborne 

illnesses affect around 600 million people annually, with contaminated meat being one of the leading sources of 

outbreaks. In addition, the Food and Agriculture Organization reports that economic losses due to food spoilage and 

waste are estimated at more than USD 400 billion per year, underlining the global urgency of improving meat freshness 

monitoring systems [3]. Therefore, an automated system based on artificial intelligence is needed that is able to detect 

the freshness of beef quickly and accurately to ensure meat quality.  

Various studies have been developed to address the problem of meat quality detection. Among them is using a 

combination of CNN and YOLOv5 in a mobile application to detect meat quality based on visual images, but it is still 

limited because YOLOv5 only focuses on bounding box detection and is less than optimal in capturing texture details 

and subtle color variations that indicate early spoilage [4], [5]. Another study applied CNN to classify chicken 

freshness, but did not integrate odor data as an additional indicator [6]. Machine learning-based approaches such as K-

NN, SVM, and Naïve Bayes have also been tested in meat freshness classification, but the results are still susceptible 

to dataset dependency and are less robust in handling complex features [7]. 

 
*Corresponding author: Bambang Kurniawan (ibenk.psht@gmail.com)   

DOI: https://doi.org/10.47738/jads.v5i2.XXX 

This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/). 

© Authors retain all copyrights 

https://orcid.org/0009-0001-9790-3219
https://orcid.org/0009-0003-7781-5224
https://orcid.org/0000-0001-5890-9100
https://orcid.org/0009-0000-7645-9692


Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2921-2937 

ISSN 2723-6471 

2922 

 

 

 

The Internet of Things (IoT) integrates networked sensors, edge computing, and cloud services to enable continuous 

real-time data acquisition, analytics, and actuation enhancing monitoring, traceability, and decision-making across 

domains such as food safety, agriculture, healthcare, and environmental surveillance while remaining scalable and cost 

effective [8], [9], [10], [11], [12]. On the other hand, IoT-based research with gas sensors has been applied to detect 

NH₃ and H₂S levels, which are the main indicators of meat spoilage [13]. However, this approach is still limited because 

it has not optimized image processing. Meanwhile, other researchers use E-Nose which has high accuracy, but faces 

cost constraints, periodic calibration, and sensitivity that can be affected by environmental factors [14]. 

Various studies have developed deep learning and machine learning methods for meat freshness detection. Other 

researchers used MSI and CNN with 93% accuracy, but were dependent on lighting [9]. Other researchers applied 

ResNet-50 with 92.5% accuracy, but were only image-based [15]. The next researcher used AutoML with 84% 

accuracy but only relied on color and texture [16]. Then developed deep learning and OpenCV 75% but had difficulty 

distinguishing types of meat cuts [17]. Other researchers compared CNN, with Ayam6Net (92.9%), but did not consider 

odor [18]. Other researchers compared CNN, with Ayam6Net (92.9%), but did not take smell into account[6]. 

Researchers used Xception achieving 86.92% accuracy but were only limited to visual imagery [19]. 

The gas sensor and IoT approaches have also begun to be applied, including integrating CNN with gas sensors with an 

accuracy of 93% but have not been tested in complex environments [14]. Furthermore, applying K-NN with gas and 

color sensors with an accuracy of 93% but are vulnerable to external factors [20]. Other researchers use E-Nose based 

on metal oxide sensors, but are expensive and sensitive [21]. Other researchers developed fluorescence sensors and 

deep learning achieving 94.17% but difficult in complex implementation [22]. The researchers further applied gas and 

color sensor-based analysis achieving 93% accuracy [23].  

Several studies comparing machine learning algorithms, among them researchers found K-NN superior with 95% 

accuracy, but dependent on large datasets [24]. Researchers further evaluated SVM, K-NN, and Naïve Bayes, with K-

NN the best achieving 93% accuracy, but having difficulty handling small color changes [25]. Researchers further 

developed a mobile application based on ResNet-50, but requiring a larger dataset [26]. Previous research developed 

CNN and YOLOv9-based models with 95% accuracy but still susceptible to lighting [27]. 

Beyond deep learning on visual data, hyperspectral imaging has emerged as a powerful technique for food quality 

inspection. As highlighted by [28], hyperspectral imaging combines spectroscopic chemical information with high-

resolution imaging, offering detailed insights into food safety, adulteration detection, and traceability. However, its 

widespread use is hindered by the high cost, bulky equipment, and difficulty in interpreting large, complex datasets. 

Another promising modality is the electronic nose, which mimics human olfaction by capturing gas fingerprint patterns. 

Other researcher reviewed recent advancements in this field, showing how electronic noses have evolved from bulky, 

expensive devices into portable and cost-effective systems that have been applied in food analysis, environmental 

monitoring, and even medical diagnostics [29]. While both hyperspectral imaging and electronic noses demonstrate 

strong potential, their practical deployment remains challenged by cost, calibration, and environmental sensitivity 

underscoring the practicality of our proposed multimodal approach integrating YOLOv11, ViT-CNN, and IoT gas 

sensors. 

Although previous meat freshness detection models achieved high accuracy, they remain limited by unstable 

performance under varying environmental conditions, restricted dataset size and diversity, and poor generalization to 

unseen data. Image-based models cannot capture chemical indicators such as odor, while gas sensor systems are prone 

to disturbances from humidity, temperature, and environmental cross-contamination. To address these issues, this study 

develops a multimodal hybrid deep learning framework that integrates visual and odor-based analysis. The IoT device 

is designed as a closed box equipped with controlled lighting, built-in cameras, and MQ136–MQ137 sensors for 

detecting H₂S and NH₃ gases key indicators of meat spoilage. In the visual stream, YOLOv11 is applied for real-time 

meat detection, Vision Transformer (ViT) for spatial feature enhancement, and CNN for initial classification. Both 

modalities are fused through a multimodal feature table combining visual predictions and gas concentration values, 

which are retrained using Random Forest as the final classifier.  

The proposed hybrid framework is expected to overcome the limitations of previous single-modality approaches by 

combining complementary strengths: visual analysis for surface and texture changes, and gas sensing for internal 
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biochemical spoilage processes. The integration of YOLOv11 with ViT-CNN enables more accurate feature extraction 

under diverse lighting conditions, while IoT-based MQ136 and MQ137 sensors provide real-time chemical indicators. 

By fusing these data streams into a multimodal learning pipeline and retraining with Random Forest, the system can 

achieve robust performance and higher generalization ability, even in non-ideal environments. 

In addition, the design of an IoT-based closed box ensures standardized data acquisition with controlled lighting and 

environmental stability, thereby reducing external noise that often hampers sensor reliability. This study not only 

contributes to advancing research in multimodal deep learning for food quality detection but also offers a practical 

solution for the food industry and regulatory agencies in Indonesia. The resulting system has the potential to strengthen 

consumer protection, reduce economic losses from meat spoilage, and support food safety policies at both national and 

global levels. 

2. Research Methodology 

To explain the model design process in its entirety, this section describes the main stages in the research from data 

processing to model performance evaluation. The model development flow can be seen in figure 1: 

 

Figure 1. Flow of Model Development 

2.1. Dataset Collection and Preprocessing 

The image dataset used in this study consists of 540 images of beef with varying levels of freshness, which were 

collected as initial data before model training. The following is a view of the dataset in the form of images that have 

been entered into the Roboflow platform for efficient annotation and dataset management processes. This dataset 

visualization is presented in figure 2: 
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Figure 2. Beef Image Dataset 

To ensure the consistency of image dimensions and orientation during training, a preprocessing stage is performed 

which includes two main processes. First, auto-orient is applied to automatically adjust the image orientation to be 

uniform horizontally or vertically. Second, all images are resized to 640×640 pixels using the resize-stretch method, 

so that all images have a uniform resolution that matches the YOLOv11 input architecture.  

2.2. Data Augmentation 

To increase the diversity of the training data and prevent overfitting, a data augmentation process was performed on 

the entire image dataset using automated features from Roboflow [30], [31]. Each original image was generated into 

three new variations through several transformations. The augmentation techniques applied include horizontal and 

vertical flip, crop with a maximum zoom limit of up to 20%, and random rotation between -14° to +14°. In addition, 

the image also undergoes horizontal and vertical shear up to ±10°, blur up to 2.6 pixels, and noise addition up to 0.69% 

of the total pixels.  

2.3. Split Dataset 

After the augmentation process is complete, the dataset is divided into three subsets for model training and evaluation 

purposes. A total of 88% of the data is used as training data, 8% as validation data, and 4% as test data. This proportion 

is designed to ensure that the model gets enough data to learn, while still being able to be evaluated objectively using 

data that has never been seen before. The division is done automatically through the Roboflow platform. 

2.4. YOLOv11 Training Model 

The detection model training is performed using the YOLOv11 architecture that has undergone an improvised stage to 

adapt to the characteristics of meat images. YOLOv11 optimization includes adjusting the model structure, redefining 

the activation function, loss function, and hyperparameter settings to improve the ability to detect subtle objects such 

as meat texture that changes in freshness. At this stage, YOLOv11 acts as the main detector to identify the meat object 

area in the image and automatically performs cropping process on the detected bounding box. The cropping results are 

then used as further input to the freshness classification process. After the definition and optimization process is 

complete, the model is trained with an image resolution of 640×640 pixels, an epoch of 50, and a batch size of 8, which 

is adjusted to the capabilities of the hardware to remain efficient but produce optimal performance. The Adam optimizer 

was chosen for its ability to maintain gradient stability on complex visual data [32], [33], and the cache=True feature 

was used to speed up data processing during training. Compared with YOLOv10, YOLOv11 incorporates a redesigned 

backbone with enhanced depth-wise convolutions, an optimized PAN-FPN neck for improved multi-scale feature 

fusion, and a refined loss function (Distribution Focal Loss) that increases sensitivity to subtle visual cues. These 

improvements are particularly beneficial for beef freshness detection, where minor changes in meat texture and color 

indicate spoilage. 
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2.5. ViT + CNN Model Training 

After the meat object detection process using the YOLOv11 model, the system automatically crops the bounding box 

area of the detection results to produce a new dataset that is more focused on the meat part. The cropped dataset is then 

used as training data for a freshness classification model consisting of a combination of ViT and CNN. ViT is used to 

extract and enhance global spatial features of the meat image, such as discoloration and subtle textures that mark 

freshness degradation, while CNN is tasked with the final classification into categories such as Fresh, Medium, or 

Rotten. This approach combines the advantages of ViT in understanding the overall image structure with the strengths 

of CNN in detecting local patterns [34], resulting in a classification model that is more accurate and sensitive to visual 

changes. To minimize error propagation from object detection to classification, YOLOv11 outputs with confidence 

values below 0.5 were excluded from the cropping process. In addition, a subset of bounding boxes was manually 

verified to ensure consistency and correctness. Although these steps reduced the risk of mis-detections entering the 

classification pipeline, this remains a limitation of the approach. Future work will explore multi-stage verification 

strategies and ensemble detection models to further improve robustness. 

2.6. IoT Sensor Data Acquisition 

The IoT system in this study is designed to obtain odor data that is a chemical indicator of the level of meat freshness 

in real-time. The following is a series of IoT devices for detecting meat quality. The overall IoT system design can be 

seen in figure 3. 

 

Figure 3. IoT System Design 

The device consists of MQ136 and MQ137 gas sensors that detect the concentration of hydrogen sulfide (H₂S) and 

ammonia (NH₃) gas, respectively, which are two common volatile compounds produced during the meat spoilage 

process. These sensors are connected to an ESP8266-based Wemos D1 Mini microcontroller, which is in charge of 

reading the sensor values and sending them wirelessly via a Wi-Fi connection. The data obtained will periodically be 

sent and logged automatically to Google Sheets as a cloud-based recording platform, allowing real-time monitoring of 

sensor values and integrating with the built classification system.  

2.7. Multimodal Integration and Random Forest Classification 

After completing visual classification with ViT+CNN and gas sensor acquisition, both modalities were integrated into 

a multimodal feature table containing visual predictions (fresh, medium, rotten), H₂S concentrations (MQ136), and 

NH₃ concentrations (MQ137). These features were then retrained using Random Forest as the final classifier to 

determine meat fitness for consumption. This multimodal fusion ensures that the system leverages both visual and 

chemical cues, while Random Forest was selected for its robustness in handling mixed data and delivering stable, 

interpretable predictions. The final classification results are divided into three categories: Suitable for Consumption, 

Needs to be Checked, and Not Suitable for Consumption, which are the basis for the system's decision-making on the 

freshness of the meat in real time and accurately. Random Forest was selected as the fusion model because of its 

robustness in handling mixed feature types categorical predictions from the visual model and continuous gas sensor 

values while providing stable performance on moderately sized datasets. Compared to neural network–based fusion 

and gradient boosting, Random Forest required less hyperparameter tuning, reduced the risk of overfitting, and 

maintained interpretability of feature contributions. While this study demonstrated strong results with Random Forest, 
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future research will investigate gradient boosting and neural network based fusion strategies to further enhance 

multimodal integration. 

2.8. Model Evaluation 

The performance evaluation of the model in this study is done through various classification metrics that reflect the 

accuracy and reliability of the system in detecting meat freshness. Some of the main evaluation methods used include 

Confusion Matrix, Classification Report, and ROC Curve n35 [35]. Confusion Matrix is used to describe the 

distribution of model predictions against the correct class, visualizing the number of correct and incorrect predictions 

in each category [36], [37], [38]. Classification Report provides detailed information about the Precision, Recall, F1-

Score, and Accuracy values for each class [39], [40], [41], [42]. While the ROC Curve is used to measure the model's 

ability to distinguish between classes, by examining the AUC value which is closer to 1 indicates better classification 

performance [43]. This evaluation was carried out for each model: CNN, ViT+CNN, Random Forest Sensor, and the 

final Multimodal model. 

3. Methodology  

3.1. Dataset Preprocessing and Augmentation Results 

The preprocessing and augmentation steps enhanced the quality and diversity of beef images for YOLOv11 training. 

The dataset, initially 540 images, was expanded to 1,296 through Roboflow augmentation. Preprocessing included 

auto-orientation and resizing to 640×640 pixels to fit the model input. Augmentation techniques such as rotation, flip, 

shear, blur, crop, and noise addition improved robustness against variations in position, lighting, and shooting angle. 

The results of these preprocessing and augmentation steps are illustrated in figure 4.  

 

Figure 4. Dataset Preprocessing and Augmentation Results 

The final result of the augmentation process produced 1134 images for training data (88%), 108 images for validation 

(8%), and 54 images for testing (4%). The various augmentation transformations applied allowed the model to learn 

from more visual variations, including subtle texture shifts, lighting distortions, and angular rotations. With 

proportional data distribution and sufficient augmentation variety, the YOLOv11 and ViT+CNN models are expected 

to be able to generalize better to new data, as well as reduce the risk of overfitting during training. 

3.2. Performance of YOLO Model Training Results 

The performance evaluation of the YOLOv11 model optimized using Adam was carried out after the training process 

was completed using the augmentation and preprocessing datasets. The model was trained to detect meat objects with 

three main classes, namely Fresh, Medium, and Rotten. The evaluation metrics used include Precision (P), Recall (R), 

mean Average Precision (mAP) at a threshold of 0.5 (mAP50) and mAP50–95. The evaluation results are shown in the 

following table 1. 

Table 1. YOLOv11 Model Performance Evaluation Results 

Class Number of Images Number of Objects Precision (P) Recall (R) mAP50 mAP50–95 

Rotten 35 35 0.997 1.000 0.995 0.925 

Medium 39 39 0.995 1.000 0.995 0.964 

Fresh 34 34 0.999 1.000 0.995 0.982 
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All 108 108 0.997 1.000 0.995 0.957 

The YOLOv11 model showed very high performance in detecting meat objects in all three classes with near-perfect 

precision values (≥ 0.995) and 100% recall in all classes. The highest mAP50-95 value was achieved in the Fresh class 

at 0.982, indicating the model's ability to distinguish subtle visual characteristics. Overall, the mAP50 value of 0.995 

and mAP50-95 value of 0.957 indicate that the YOLOv11 model used has been successfully trained very well and is 

able to perform precise object detection in the context of meat freshness classification. 

3.3. Evaluation of the YOLO Model 

Further evaluation of the YOLOv11 model is not only done through accuracy and mAP metrics, but also by analyzing 

the spatial distribution of bounding boxes generated during the labeling and detection process. This analysis is 

important to ensure that the model is not only numerically accurate, but also stable in recognizing and labeling objects 

at various positions and sizes in the image. The visualization of this analysis is presented in figure 5. 

 

Figure 5. Spatial Distribution of Bounding Boxes on YOLOv11 Training Dataset 

Figure 5 illustrates the heatmap pairplot of bounding box coordinates (x, y) and dimensions (width, height). The 

distribution of object positions appears symmetrical and centered, confirming consistent image capture and labeling. 

A strong correlation between width and height reflects the uniform shape ratio of meat samples, while the absence of 

extreme outliers indicates high annotation quality and evenly distributed data. These findings reinforce that the 

YOLOv11 model benefits from stable, representative training data in addition to strong predictive performance. The 

following is a visualization of the distribution of labels, bounding boxes, and object positions, as shown in figure 6. 

Figure 6 shows that the label distribution of the three classes (Rotten, Medium, Fresh) is relatively balanced, with the 

number of instances close to 350-400 per class. Visualization of the bounding box accumulation shows that the majority 

of the objects are in the center of the image, indicating consistent camera framing quality during dataset acquisition. 

Heatmaps of the x-y position and width-height bounding box dimensions also show that the model was trained with 

realistic variations in position and size, while remaining centered and containing no extreme outliers.  
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Figure 6. Visualization of Label Distribution, Bounding Box, and Object Position 

The performance evaluation of the YOLOv11 model is also carried out by analyzing the loss trend and evaluation 

metrics during the training process until the 50th epoch. This graph includes the bounding box function loss, 

classification, distance distribution, as well as precision, recall, and mAP. The relationship between precision and recall 

is further depicted in figure 7. 

 

Figure 7. F1 Curve against Confidence Score for Each Class 

 

Figure 7 shows that the loss values for box, classification (cls), and distance-from-location (dfl) on both training and 

validation data experience a steady decrease as the number of epochs increases, indicating that the model learning 

process is effective without any indication of overfitting. On the other hand, the precision and recall values continue to 

increase and reach values close to 1.0 at the end of training, indicating the model's ability to detect objects accurately 

and comprehensively. In addition, the mAP50 and mAP50–95 metrics have increased significantly since the beginning 

of training, with a flat curve after the 30th epoch, indicating that the model has reached optimal convergence. These 

results confirm that the training parameters used (epoch, batch size, Adam optimizer) have produced very good and 
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stable model performance on the meat freshness detection task. As a final validation, a confusion matrix visualization 

is performed to evaluate the accuracy of the model's predictions for each class. This matrix displays a comparison 

between the actual labels and the model's predicted labels, as shown in figure 8. 

 

Figure 8. Confusion Matrix and Normalized Confusion Matrix 

Figure 8 shows the confusion matrix results and its normalized version, where the YOLOv11 model successfully 

classified all samples in the Rotten, Medium, and Fresh classes 100% correctly without any misclassification. The 

numbers 35, 39, and 34 on the main diagonal reflect the number of correct predictions of each class in total, and this 

result is reinforced by the normalization which shows a score of 1.00 across all classes.  

3.4. ViT + CNN Classification Results 

Before being trained using the ViT + CNN model, the meat image dataset was first automatically cropped using the 

trained YOLOv11 model (best.pt). This process produces a set of cropped images that focus more on the meat object 

area without the background. To measure the performance of the visual classification model, an evaluation was 

conducted on the prediction results of the CNN and ViT models on the YOLO cropped image. Confusion matrix was 

used to identify the level of classification accuracy of each model in three main classes: Rotten, Medium, and Fresh. 

The comparison of these confusion matrices is presented in figure 9. 

 

Figure 9. Comparison of Confusion Matrix Model CNN and ViT in Classification 

Figure 9 shows that the CNN model produces several classification errors, especially in the medium class which tends 

to be predicted as Rotten (25 samples) and Fresh (8 samples). Meanwhile, the ViT+CNN model shows a much more 

stable classification performance with results that are close to perfect; all samples in the Rotten and Fresh classes are 

correctly classified, and only two samples in the Medium class are misclassified as Fresh. These results confirm that 

ViT+CNN excels in extracting visual features globally, producing more accurate and consistent classifications than 

conventional CNN in the context of meat freshness classification.  As a complement to the confusion matrix evaluation, 

a classification report is used to compare classification metrics between models. The metrics displayed include 

precision, recall, f1-score, and total accuracy for each class. The results of this comparison are presented in figure 10. 
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Figure 10. Comparison of Classification Report Model CNN and ViT+CNN 

Figure 10 shows that the CNN model has an accuracy of 0.87, with a notable drop in f1-score in the Medium class 

(0.77), indicating the model's weakness in distinguishing the medium class which has ambiguous visual features. In 

contrast, the ViT+CNN model achieved an accuracy of 0.99, with a high and balanced f1-score across all classes (≥ 

0.98), including the Medium class which was previously a weak point of CNN. The superior performance of ViT+CNN 

shows that combining global (ViT) and local (CNN) feature extraction provides much more stable, accurate and even 

classification results across classes. To observe the stability of the training process, a comparison of the training loss 

between the pure CNN model and the combined ViT + CNN model was carried out. The following figure 11 shows 

the decrease in loss against the number of epochs. 

 

Figure 11. Comparison of Training Loss between CNN and ViT + CNN Models 

Figure 11 shows that the ViT+CNN model experiences a faster and more stable loss decrease than the CNN model 

alone. Since the beginning of training, the loss of the combined model drops drastically and remains low with minimal 

fluctuations, while the CNN model experiences a slower decrease and shows instability at several epoch points, 

including a significant spike at epoch 14. This indicates that the integration of ViT helps to absorb spatial information 

more efficiently, thereby accelerating convergence and reducing the risk of overfitting. This training loss performance 

strengthens the previous evaluation results that ViT + CNN is superior in terms of training accuracy and stability. To 

ensure the effectiveness of the model in a real context, direct testing was conducted on meat images from the three 

classes using the ViT+CNN model. The outcomes of these tests are presented in figure 12. 

 

Figure 12. Visualization of ViT + CNN Model Prediction Results on Test Samples 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2921-2937 

ISSN 2723-6471 

2931 

 

 

 

Figure 12 displays the prediction results of the ViT + CNN model showing that all test images were successfully 

classified according to their original labels. The model can distinguish the visual characteristics of Rotten, Medium, 

and Fresh meat consistently without any classification errors. This shows the generalization ability of the model to new 

data that has never been trained before. This performance reinforces that ViT+CNN not only excels in quantitative 

metrics such as accuracy and f1-score, but is also highly reliable when applied in real test conditions. 

3.5. IoT Based Sensor Data Acquisition Performance 

To support multimodal meat freshness detection, a prototype IoT device has been developed and tested directly. This 

device is designed using MQ136 and MQ137 gas sensors installed in a closed box with controlled lighting. The sample 

meat is placed in the box, and the results of the detection of H₂S and ammonia levels are displayed in real-time on the 

LCD screen. The following figure 13 is a display of the meat quality detection box that has been designed: 

 

Figure 13. Prototype of IoT Device for Meat Quality Detection 

Figure 13 shows the physical appearance of the IoT-based detection device that has successfully acquired and displayed 

H₂S and NH₃ gas levels from meat pieces in the test box. The MQ137 sensor detects ammonia, while the MQ136 reads 

H₂S levels. The distribution of gas concentration values was further analyzed per freshness class. Samples categorized 

as Fit for Consumption showed consistently low levels (MQ136 ≈ 0.97 ppm; MQ137 ≈ 0.87 ppm), while Need to 

Check cases exhibited intermediate and more variable ranges (MQ136 ≈ 1.19 ± 0.21 ppm; MQ137 ≈ 1.86 ± 0.87 ppm). 

In contrast, Not Fit for Consumption samples recorded distinctly higher concentrations (MQ136 ≈ 1.32 ppm; MQ137 

≈ 2.70 ppm). These distributions provide clearer separation among freshness categories and support the decision 

boundaries learned by the Random Forest classifier. The raw signals from MQ136 and MQ137 were preprocessed 

using a moving average filter (window size = 5) for noise reduction, baseline correction in clean-air conditions to 

address drift, and normalization (0–1) for comparability. The IoT detection box was equipped with internal LED 

lighting, ensuring consistent and uniform illumination across all samples. This design reduced variability due to 

external lighting conditions and supported stable data acquisition during testing. 

3.6. Multimodal Visual Integration and IoT Sensors 

The multimodal dataset in this study was developed through the integration of meat image classification results using 

the ViT+CNN model and readings of ammonia (NH₃) and hydrogen sulfide (H₂S) gas levels obtained from the MQ137 

and MQ136 sensors. The final status labeling process was carried out by considering gas threshold values based on 

scientific references and expert validation in the fields of food technology and environmental health. There are a total 

of 2100 entries in the dataset, each consisting of three input features (visual image class, MQ136, and MQ137 levels) 

and one output label in the form of the final status: Appropriate, Not Appropriate, and Need to Check. The structure of 

this dataset is summarized in table 2. 

Table 2. Multimodal Dataset for Random Forest Classification 

Visual MQ136 MQ137 Status 

Medium 1.11 1.50 Need to Check 

Fresh 0.99 0.88 Appropriate 

Fresh 0.99 0.86 Appropriate 
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Rotten 1.32 2.70 Not Appropriate 

Medium 1.13 1.12 Need to Check 

Medium 1.17 1.63 Need to Check 

Fresh 12.15 24.08 Need to Check 

Rotten 9.26 9.133 Need to Check 

Fresh 16.27 33.02 Need to Check 

Fresh 1.00 0.88 Appropriate 

Medium 1.05 0.73 Need to Check 

Fresh 12.15 22.87 Need to Check 

Fresh 0.99 0.87 Appropriate 

Table 2 shows the combined data format between visual classification results and IoT sensors used to train the Random 

Forest model. The final status is classified into three categories: Appropriate (fresh visuals and low gas levels), Not 

Appropriate (rotten visuals and high gas levels), and Need to Check for ambiguous or borderline cases. This approach 

improves accuracy while adding an element of caution to decision making, in line with food safety principles. 

To evaluate the classification performance on multimodal systems, the Random Forest model was trained using a 

dataset that combines visual and gas sensor data. The evaluation was performed on three final status categories: 

Appropriate, Not Appropriate, and Need to Check. The following figure 14 is the confusion matrix and classification 

report from Random Forest: 

 

Figure 14. Confusion Matrix and Classification Report Model Random Forest 

Figure 14 shows that the Random Forest model is able to classify the data very well, with an overall accuracy of 98%. 

The Appropriate class is perfectly recognized (recall and f1-score = 1.00), while the Need to Check and Not Appropriate 

classes also show high performance with f1-scores of 0.96 and 0.97, respectively. The number of misclassifications is 

very minimal, indicating that the combination of visual and sensor features provides complementary information. This 

confirms the reliability of the multimodal approach in providing accurate and careful predictions, especially for 

threshold categories such as Need to Check. 

As part of the system implementation, a Graphical User Interface (GUI) application was designed using the Streamlit 

framework. This application allows users to detect meat freshness directly and interactively through a camera or image 

upload that can be accessed via mobile devices or personal computers. The interface and workflow of this application 

are presented in figure 15. 
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Figure 15. Implementation of Streamlit-Based Meat Freshness Detection Model 

Figure 15 shows the application interface built using Streamlit, where users can select the input source, either from the 

camera or image upload. The camera used comes from the Meat Quality Detector IoT Box device, which is integrated 

with a gas sensor. After the image is processed, the application displays the visual detection results, MQ136 and MQ137 

gas level readings, and the final status such as Consumable. This display is designed to be easily accessible and used 

in the field, allowing the meat quality assessment process to be carried out in real-time, accurately, and multimodally. 

An ablation study was conducted to evaluate the contribution of each modality. The visual-only (ViT+CNN) model 

achieved 99% accuracy, while the chemical-only (MQ136, MQ137 + Random Forest) model reached 93% accuracy. 

In contrast, the multimodal fusion achieved 98% accuracy with a ROC-AUC close to 1.0, demonstrating that each 

modality contributes complementary information and that their integration improves reliability in ambiguous cases. 

3.7. Comparative Analysis of Model Performance 

To find out how much performance improvement is achieved by the YOLOv11 model proposed in this study, a 

comparison is made with several previous YOLO versions (YOLOv7 to YOLOv10). The evaluation is carried out on 

the same dataset to ensure consistency. The evaluation metrics used include precision, recall, mAP@0.5, and 

mAP@0.5:0.95. The comparison results are shown in table 3. 

Table 3. Yolo Model Performance Comparison 

Model Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv7 0.75 0.66 0.705 0.412 

YOLOv8 0.78 0.68 0.722 0.435 

YOLOv9 0.76 0.67 0.710 0.426 

YOLOv10 0.79 0.70 0.739 0.456 

YOLOv11 (Research) 0.99 1.00 0.99 0.957 

Table 3 shows that YOLOv11 consistently outperforms earlier versions, achieving precision 0.997, recall 1.000, 

mAP@0.5 0.995, and mAP@0.5:0.95 0.957 demonstrating stable and accurate performance through architecture 

optimization, Adam optimizer, data augmentation, and hyperparameter tuning. To validate the ViT-CNN approach, 

comparisons were also made with ViT-LSTM, ViT-RNN, ViT-GRU, and ViT-UNet, confirming the effectiveness of 

ViT-CNN for meat image classification. The performance comparison can be seen in table 4: 

Table 4. Comparison of ViT Model Performance with Deep Learning 

Researcher Year Model Accuracy 

[44] 2022 VIT-Bi-LSTM 86.67% 

[45] 2024 ViT-LSTM 91.15% 

[46] 2024 ViT-UNet 93.50% 

[47] 2025 ViT-RNN 92.10% 
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[48] 2025 ViT-GRU 98.76% 

(This Research) 2025 ViT+CNN 99.00% 

Table 4 shows that the combination of ViT with CNN yields the highest accuracy of 99.00%, surpassing all comparison 

models. The ViT-GRU combination came in second with an accuracy of 98.76%, while ViT-UNet achieved 93.50% 

which excelled at segmentation but was less efficient in pure classification. ViT-RNN and ViT-LSTM models 

performed well but still below 93%. Meanwhile, ViT-BiLSTM which is the initial approach recorded the lowest 

accuracy of 86.67%. These results reinforce the position of ViT-CNN as the most optimal combination in visually 

detecting meat freshness, by utilizing the strength of ViT's spatial representation and CNN's superiority in local feature 

capture. To validate the significance of the observed improvements, paired t-tests were conducted on the accuracy and 

mAP values across 10-fold cross-validation. The results showed that YOLOv11 significantly outperformed YOLOv7–

YOLOv10 (p < 0.05), and the ViT-CNN model achieved statistically significant improvements compared to ViT-

LSTM, ViT-RNN, and ViT-UNet (p < 0.05). These findings confirm that the performance gains are not incidental but 

statistically meaningful. 

4. Results and Discussion 

This study presents the development of a multimodal beef freshness detection system that integrates visual image 

processing and IoT-based odor sensing. The visual pipeline employs YOLOv11 for object detection, enhanced with 

Vision Transformer (ViT) and Convolutional Neural Network (CNN) for classification, while odor data is obtained 

through MQ136 and MQ137 gas sensors measuring H₂S and NH₃ concentrations. The YOLOv11 model optimized 

with the Adam optimizer achieved excellent performance (mAP@0.5 = 0.99, mAP50–95 = 0.957), demonstrating 

stability and fast convergence in handling complex visual data. The combination of ViT and CNN achieved the highest 

classification accuracy of 99%, outperforming other tested architectures. Multimodal feature fusion using Random 

Forest yielded a final classification accuracy of 98% with three decision categories: Fit for Consumption, Need to 

Check, and Not Fit for Consumption, effectively addressing ambiguity in visual and chemical signals. The system 

offers accurate, real-time detection supported by a Streamlit-based GUI for practical deployment in food safety, retail, 

and industry. Nevertheless, challenges remain in scalability, long-term sensor durability under environmental 

variations, and reliance on relatively limited datasets. Future work will focus on in-field testing, dataset expansion 

across diverse sources, Edge AI integration for autonomous processing, and exploration of temporal-based hybrid 

architectures such as ViT-LSTM or ViT-GRU to further enhance robustness. Although the experiments were conducted 

under controlled laboratory conditions, MQ136 and MQ137 are known to be cross-sensitive to other gases and 

influenced by environmental factors such as humidity and temperature. Addressing these issues through compensation 

strategies and sensor fusion will be the subject of future research to enhance robustness in real-world deployments. 

Future work will address this through automated calibration, sensor redundancy, and periodic recalibration to improve 

robustness in field deployment. 
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