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Abstract 

Malnutrition remains a persistent global health challenge, especially among children under five. Traditional assessment methods often rely on 

static anthropometric measures, which are limited in capturing complex growth patterns. This study aims to develop a robust classification model 

for predicting the nutritional status of children under five years old, addressing the critical public health challenge of stunting. The model 

contributes to the growing need for accurate, data-driven early detection systems in child health monitoring by introducing a hybrid framework 

that combines deep learning and classical machine learning techniques. The proposed approach integrates automatically extracted features from 

a One-Dimensional Convolutional Neural Network (1D-CNN) with classical anthropometric indicators. These combined features are processed 

through an additive attention mechanism, highlighting the most informative attributes. The attention-weighted representation is then classified 

using an ensemble stacking method that aggregates predictions from multiple base classifiers, including decision trees, nearest neighbor 

algorithms, support vector machines, etc. Synthetic Minority Over-sampling Technique (SMOTE) is applied to the training dataset to mitigate 

data imbalance, particularly the underrepresentation of severe and moderate malnutrition cases. The research utilizes a dataset comprising 2,789 

records of children under five years old collected from community health posts in Indonesia. Data preprocessing included cleaning, normalization, 

and gender encoding. The model’s performance was evaluated using 5-fold cross-validation and measured by accuracy, precision, recall, and 

area under the curve metrics. The results show that the proposed model achieved an average accuracy of 99.70% and an area under the curve of 

99.99%. An ablation study further demonstrated the significant contribution of each component, feature extraction, fusion mechanism, and 

ensemble classifier to the final performance. This approach reveals a robust and scalable solution for early nutritional status prediction in 

healthcare settings. 

Keywords: Nutritional Status Classification, 1D-CNN, Ensemble Learning, Additive Attention, SMOTE, Dual-Fusion, Child Malnutrition 

1. Introduction  

The problem of malnutrition, especially stunting, remains a global public health challenge [1], [2]. In Indonesia, the 

prevalence of stunting reached 36% based on the 2022 Nutritional Status Survey [3]. Java Island, with the highest 

number of toddlers, contributed a significant figure, with Central Java recording the highest prevalence of 20.8% [4]. 

Malnutrition impacts physical growth, cognitive development, and the risk of chronic diseases in the future [5]. Early 

detection of children's nutritional status is crucial to prevent these long-term impacts [6], [7]. 

Conventional nutritional status assessment generally uses anthropometric parameters such as weight, height, and body 

mass index. However, this approach is static and less adaptive to variations in growth between individuals. Machine 

Learning (ML) algorithms such as Decision Trees (DT), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Support 

Vector Machine (SVM) have been used specifically for nutritional status classification [2], [8], [9], [10], [11], [12], 

[13]. Although the single model is easy to implement and fast in inference, its limitations lie in its sensitivity to noise 

and overfitting on complex datasets. In contrast, ensemble models such as stacking, boosting or voting can combine 

the strengths of several base models to improve the accuracy, stability, and generalization of predictions [14], [15], 
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[16], [17], [18]. One of the important challenges in classification, specifically on health data sets such as nutritional 

status, is a class imbalance, where the amount of data in certain categories, such as undernutrition or overweight, is 

much less than the normal category. This imbalance can cause a model bias towards the majority class. To overcome 

this, a balancing strategy is needed for the training data. In this study, the Synthetic Minority Over-sampling Technique 

(SMOTE) was used because of its ability to produce realistic synthetic data through feature vector interpolation from 

the minority class [19]. SMOTE is widely used in the health sector because it does not simply duplicate data but creates 

variations that can help improve model generalization without overfitting [20], [21]. [22]. 

While SMOTE is applied to address class imbalance during training, the overall classification performance is also 

influenced by the representational quality of the input features. Most studies still rely solely on classical tabular-based 

features, which are often inadequate for capturing the complex, non-linear patterns associated with child growth 

trajectories. Conversely, DL models like RNN or CNNs can extract complex, non-linear features and uncover latent 

patterns embedded in data [23], [24], [25].  Unlike classical ML approaches that are handcrafted, CNN features are 

extracted automatically through a hierarchical learning process from neural networks [26]. Meanwhile, CNN models 

are more widely used as feature extractors in image data. In some CNN-based studies, images are only used as feature 

extractors, and ML classifiers such as SVM or RF are used. In 1D tabular data, CNN can be utilized, which has been 

proven effective in capturing local structures and sequence patterns [24], [25], [27]. CNN is used for feature extraction 

and can be combined with the final classification layer in one end-to-end network to improve overall performance. 

Therefore, combining classical interpretable features with deep features extracted from 1D-CNNs is a potential 

approach to improve the accuracy and generalization ability of the model. However, this fusion must be done 

strategically to maximize the information from each feature type. In this context, fusion methods become important to 

combine both strengths effectively. 

To overcome the limitations of a single method, this study proposes a two-layer hybrid approach: intermediate fusion 

and late fusion. In the intermediate fusion stage, features extracted from 1D-CNN are combined with classical 

anthropometric features. The fusion is done through the attention function, specifically, Additive Attention, which is 

designed to focus weighting on the most relevant features in tabular data [28], [29]. Theoretically, the attention function 

allows the model to allocate higher weights to important features by considering correlation and contextual 

significance. Afterwards, in the late fusion stage, the classification results from several base classifiers are combined 

in an ensemble to produce a more robust final decision[14]. 

This two-level approach is inspired by Boulahia et al. [30], who compared and proved that intermediate and late fusion 

performs better than early fusion. In the health sector, the intermediate fusion strategy also positively affects modular 

data [31]. Building on these insights, this study hypothesizes that a dual-fusion architecture can substantially enhance 

model performance by leveraging deep and classical feature representations. To address the issue of class imbalance 

in health datasets, this study employs the SMOTE during the training phase. This approach ensures that the model 

adequately learns underrepresented classes, such as moderate and severe malnutrition. Building upon this balanced 

foundation, the study develops a classification model for predicting the nutritional status of toddlers using a hybrid 

dual-fusion approach. At the intermediate fusion stage, deep features extracted by 1D-CNN are combined with classical 

anthropometric features. These combined features are further refined using an additive attention mechanism, which 

assigns higher weights to the most informative attributes. This fusion enhances the model’s capacity to represent 

complex nutritional patterns. At the late fusion stage, the classification outcomes from several base learners are 

integrated through an ensemble stacking strategy to ensure robustness and improved generalization. The combination 

of interpretable classical features and automatically learned deep features aims to maximize prediction accuracy. To 

evaluate the performance of the proposed model, key metrics such as accuracy, precision, recall, and F1-score are 

employed on a real-world dataset of toddlers. 

2. Related Work 

Several previous studies have examined the prediction of child malnutrition using individual ML algorithms. Most 

research on child nutritional status prediction still relies on individual ML algorithms. Studies by [32] and [33] reviewed 

the application of ML in the context of precision nutrition and general nutrition research, including the algorithms and 

metrics used. A specific predictive study was conducted by [34] in India using the AutoML approach and a combination 
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of anthropometric indices such as stunting and wasting. At the same time, [35] evaluated the nutritional prediction of 

toddlers in Bangladesh and reported the best performance of the Random Forest algorithm. Other studies by [36] and 

[37] compared the performance of gradient boosting, logistic regression, and C4.5.  

A study in Afghanistan [38] showed that Gradient Boosting (GB) excels in classifying three nutritional categories: 

undernutrition, stunting, and wasting. Several ensemble learning-based approaches have been used to improve 

prediction accuracy. For example, stacking was used in glaucoma classification by [39], clinical prediction of skin 

diseases by [17], detection of hypertension [40], and diabetes classification by [14]. Ensemble models have been shown 

to improve stability and accuracy by reducing variance and bias by combining multiple base models [41]. A recent 

paper by Jain et al. [42] further evaluated the efficiency of tabular ML and AutoML models in child malnutrition 

prediction in India, using a combination of HAZ, WHZ, and hybrid stunted-wasting (HAWH) indices. They concluded 

that AutoML and deep learning-based models such as TabNet provide high accuracy of up to 96.46% and AUC of 

97.19%. However, they are limited to the automatic combination of classical models without architectural integration 

or deeper feature representation. A study by Duyar et al. [43] also showed that 1D-CNN outperformed other models in 

cardiovascular disease classification using tabular microbiota data, indicating the great potential of 1D CNN in the 

medical tabular domain. 

In feature fusion, the common approaches used are concatenation and attention-based fusion. Concatenation techniques 

combine features from different sources into a single vector representation but often assume equal feature contributions. 

In contrast, attention-based approaches, such as additive attention, allow the model to give greater weight to contextual 

and relevant features, making it more adaptive to the complexity of tabular data. While existing studies have explored 

deep learning or ensemble approaches independently, the integration of 1D-CNN for deep feature extraction, attention-

based intermediate fusion, and ensemble-based late fusion remains relatively underexplored in the context of nutritional 

status classification among toddlers. This study addresses this methodological gap by proposing a dual-fusion hybrid 

framework that aims to enhance classification accuracy through a synergistic combination of these techniques. 

3. Proposed Method  

This study proposes a classification model for the nutritional status of toddlers based on a two-level hybrid approach, 

namely intermediate fusion and late fusion. This model combines original features with deep feature representations 

from 1D CNN networks, which are then combined using additive attention and classified using an ensemble stacking 

model. The complete architecture is shown in figure 1. 

 

Figure 1. Proposed method 
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Figure 1 illustrates the overall pipeline of the proposed dual-fusion architecture. The process begins with data 

preprocessing, including cleaning, normalization, and stratified splitting. SMOTE is applied only to the training set to 

balance class distribution, ensuring that rare classes are adequately represented during learning. Afterwards, both 

training and testing data undergo a shared feature extraction and fusion process. Specifically, tabular features are passed 

through a 1D CNN to extract deep representations. These are then combined with classical anthropometric features 

using an additive attention mechanism. To clarify the modelling phases, the flowchart distinguishes intermediate fusion 

using attention (training phase) from intermediate fusion using attention (testing phase). This ensures transparency that 

fusion is applied identically during inference, but training involves SMOTE-balanced inputs. 

In the final stage, the attention-weighted feature representations are classified using a stacking ensemble, including 

KNN, Bayesian Network, Decision Tree, Gradient Boosting, and SVM as base learners. Logistic Regression (LR) 

serves as the meta-learner.  

3.1. Data Input and Preprocessing 

The dataset used in this study comprises anthropometric and demographic characteristics of children under five years 

old, including weight, height, age in months, gender (categorical), and nutritional status as the class label. Several 

preprocessing steps were carried out to ensure the data's quality and reliability. First, the data cleaning process involved 

standard data frame operations to remove duplicate entries and records containing missing values in key columns. This 

step was essential to maintain the integrity of the dataset used for training and evaluation. Next, the categorical gender 

attribute was encoded into a binary format using one-hot encoding. To avoid issues of multicollinearity, only one of 

the resulting binary columns was retained—specifically, a column denoting gender as female (Gender_g), where a 

value of 1 represents a girl and 0 represents a boy. 

Following encoding, all numerical features were normalized using standard z-score normalization to ensure that each 

feature contributes proportionately to the learning process. The normalization was performed using Equation (1): 

x =
𝑥−𝜇

𝜎
  (1) 

𝑥  is the original value, 𝜇 is the mean of the feature, and 𝜎 is the standard deviation of the feature. Lastly, the dataset 

was split into 80% for training and 20% for testing using stratified sampling, which was conducted based on the 

nutritional status labels to preserve the original distribution of classes in both subsets. This stratification ensures that 

each class is proportionally represented, thereby supporting unbiased model evaluation.  

3.2. Data Balancing with SMOTE  

To address the class imbalance in the training data, this study applies the SMOTE. SMOTE generates synthetic samples 

for the minority class by interpolating between feature vectors of neighbouring minority instances in the feature space. 

We adopt the commonly used default setting of k_neighbors = 5, which defines the number of nearest neighbors used 

in the interpolation process[44]. This value has been widely used in literature for imbalanced classification tasks as a 

trade-off between oversampling aggressiveness and noise sensitivity. Given the moderate imbalance level in our 

dataset, this setting was deemed appropriate and effective for generating representative synthetic samples. SMOTE is 

applied exclusively to the training set after the data split to prevent data leakage, ensuring that the test data remains in 

its original, naturally imbalanced distribution. 

3.3. 1D CNN Feature Extraction 

To extract high-level representations from the tabular input  𝑋 ∈  ℝ𝑛×𝑑2 , a 1D-CNN is employed. CNN is effective 

in processing 1D structured data by capturing local patterns and sequence dependencies along the feature dimension 

[24], [25], [27]. Each row 𝑥 ∈  ℝ𝑛×𝑑  of the input matrix is treated as a 1D sequence and reshaped to a tensor of shape 

(𝑑2, 1) enabling the convolutional filters to slide over the feature dimension. This reshaping process allows 1D-CNN 

to learn spatial hierarchies of features by applying a series of convolution and pooling operations. The general form of 

the convolution operation applied to each input vector is defined as: 
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h𝑖 = 𝑓{∑ 𝑤𝑗 ∙ 𝑥𝑖+𝑗 + 𝑏𝑘−1
𝑗=0 }  (2) 

𝑓 is a non-linear activation (ReLU). 𝑤𝑗 are the convolutional weights, and 𝑏 is the bias term. The resulting output forms 

a deep feature map 𝐷 =  [ℎ1, ℎ2, . . . , ℎ𝑚] is used as the deep-learned representation of the input instance; see Algorithm 

1 for more details.  

Algorithm 1: CNN Feature Extraction for Tabular Row Input 

Input:  Tabular data  𝑋 ∈  ℝ𝑛×𝑑   

Output: deep feature vector 𝐷 

1:     For each sample 𝑥 in 𝑋: 

2:     Reshape 𝑥 →  (𝑑, 1) 

3      Apply Conv1D → ReLU → BatchNorm 

4:     Apply MaxPooling 

5:     Apply second Conv1D → ReLU 

6:     Apply GlobalAveragePooling 

7:     Apply Dense(64) → ReLU  

The detailed CNN configuration used in our method is presented in table 1. 

Table 1. CNN 1D Architecture 

Configuration Value 

Input Vector with length equal to the number of original features 

Conv1D layer 1 64 filters, kernel size = 3, activation = ReLU 

BatchNormalization Applied after the first convolution layer to stabilize learning 

MaxPooling1D Pool size = 2 

Conv1D layer 2 128 filter, kernel size = 3, activation = ReLU 

GlobalAveragePooling1D Converts feature maps to a one-dimensional vector. 

Dense 64 unit, activation ReLU 

Optimizer Adam, learning rate: 0.001 

Epoch 50 with early stopping. 

Batch size 32 

The extracted deep features 𝐷 are subsequently integrated with classical features in the intermediate fusion stage 

described in the following subsection. 

3.4.Intermediate Fusion with Additive Attention  

Following feature extraction, the classical tabular features 𝐶 ∈ ℝ𝑑1 are concatenated with the deep CNN feature vector 

𝐷  to form a joint representation 𝐹 = [𝐶||𝐷] . Instead of relying solely on concatenation, an additive attention 

mechanism is employed to selectively emphasize the most informative features from the combined representation.  

Mathematically, the additive attention mechanism, as applied in recent attention-based deep fusion frameworks, 

computes a context vector 𝑐 from the combined feature set 𝐹 =  [𝐹1, 𝐹2, . . . , 𝐹𝑛]. Each 𝐹𝑖 is transformed via a non-linear 

projection and scored accordingly [29]. 

𝑒𝑖 =  𝑣ᵀ 𝑡𝑎𝑛ℎ(𝑊 · 𝐹𝑖  +  𝑏) (3) 

The scores 𝑒𝑖 are normalized via softmax: 

𝛼𝑖 =  
exp(𝑒𝑖)

∑ exp(𝑒𝑗)𝑗
  (4) 
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The context vector 𝑐 is then computed as a weighted sum: 

𝑐 = ∑ 𝛼𝑖 ∙ 𝐹𝑖𝑖   (5) 

This mechanism allows the model to focus on salient dimensions across classical and learned features, resulting in a 

more informative and discriminative representation. The complete fusion process is summarized in Algorithm 2. 

Algorithm 2: Additive Attention-Based Intermediate Fusion 

Input:  

  - Classical features 𝐶 ∈ ℝ𝑑1 

  - Deep feature vector 𝐷 ∈  ℝ𝑛×𝑑2   

Output:  

  - Context vector 𝑐 ∈ ℝ𝑑 

1: Concatenate features: 𝐹 = [𝐶||𝐷] 

2: for each feature vector 𝐹𝑖 in 𝐹 do  

3:      𝑒𝑖 =  𝑣ᵀ 𝑡𝑎𝑛ℎ(𝑊 · 𝐹𝑖  +  𝑏) 

4: end for 

5: Compute attention weights:  

6:      𝛼𝑖 =  
exp(𝑒𝑖)

∑ exp(𝑒𝑗)𝑗
 

7: Compute context vector: 

8:      𝑐 = ∑ 𝛼𝑖 ∙ 𝐹𝑖 

9:   return c 

To further support reproducibility, the implementation of the attention mechanism is detailed in table 2. 

Table 2. Additive Attention Architecture 

Configuration Value 

Input Concatenated CNN deep features and original features 

Dense layer 128 units, activation = tanh 

Dense layer 1 unit, linear activation to compute attention scores 

Softmax Converts attention scores into weight distribution 

Output Focused feature representation based on learned attention weights 

Table 2 delineates the architectural configuration of the hybrid Attention-CNN model. The attention mechanism 

emphasizes salient feature representations extracted by the convolutional layers, which are subsequently processed 

through a dual-layered fully connected neural structure to enhance feature abstraction. The resulting feature vector is 

then propagated to a softmax activation function, which computes a normalized probability distribution over the output 

classes, thereby facilitating the final classification decision. 

3.5.Ensemble Classification/Late Fusion  

The proposed model employs a stacking ensemble strategy to finalize classification, where multiple base classifiers are 

combined through a meta-learner to enhance predictive performance and generalization. The base learners used in this 

study include KNN, Bayesian Network, DT, GB, and SVM. These classifiers are chosen for their complementary 

learning characteristics. Their configurations are listed in table 3. 

Table 3. Classifier Model Architecture 

Configuration Value 

KNN n_neighbors = 5 

Bayesian Network default 
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Configuration Value 

DT max_depth = 5 

GB n_estimators = 100, learning_rate = 0.1 

SVM kernel = ‘rbf’, C = 1.0 

LR (meta learner)  Solver: liblinear; Regulation: L2 (default) 

During the training phase, a 5-fold cross-validation stacking procedure is adopted. The base learners are trained using 

four folds of the training set in each fold. Their predictions on the remaining (held-out) fold are collected as out-of-

fold predictions, forming the input features for the meta-learner. This process ensures that the meta-learner is trained 

on data that was never seen by the base learners during their individual training, thus avoiding information leakage. 

We adopt a stacked generalization strategy based on learned aggregation, in which a Logistic Regression model is 

trained as a meta-learner on the out-of-fold predictions. This approach is chosen over soft-voting or hard-voting 

strategies because it allows the meta-learner to model interactions and relative confidence levels among base models, 

leading to more effective combination of their strengths and improved generalization. During inference, all base 

learners are retrained on the full training set. The predictions generated by these retrained models on the test set are 

passed to the trained meta-learner, which then outputs the final classification result. This late fusion architecture 

leverages the diversity of base models and allows the meta-learner to adaptively weigh their outputs, leading to more 

stable and accurate predictions. 

3.6.Model Testing and Evaluation 

In the testing phase, the testing data is processed using the same pipeline: features are extracted using 1D-CNN, merged 

via attention, and classified using the trained stacking model. Performance evaluation uses metrics, namely accuracy, 

precision, recall, F1-score, and confusion matrix. Table 4 presents a concise input–process–output overview of the 

proposed pipeline to summarize the proposed model workflow. 

Table 4. Model Pipeline Overview (Input–Process–Output Summary) 

Stage Component Description 

Input 

Anthropometric & Demographic 

Features 

Weight, height, age (in months), birth weight, birth height, gender 

(binary) 

Class Label Nutritional status (e.g., stunted / not stunted) 

Process 

Preprocessing 
Missing value removal, duplicate removal, normalization 

(StandardScaler), one-hot encoding 

Data Balancing (Training only) SMOTE (k = 5) applied post-split on the minority class 

Feature Extraction 
1D CNN with two convolution layers and pooling (table 1 

configuration) 

Intermediate Fusion 
Additive attention mechanism on concatenated deep and classical 

features 

Late Fusion/ Ensemble Classification 
Ensemble stacking: KNN, Bayesian Network, DT, GB, SVM, and 

meta learner: Logistic Regression 

Output 
Prediction Binary classification: predicted nutritional status label 

Evaluation Accuracy, Precision, Recall, F1-Score, Confusion Matrix 

4. Results and Discussion 

4.1. Proposed Method Results 

The dataset for this study was obtained from posyandu (integrated health service posts) in Semarang City, Central Java, 

Indonesia, consisting of 2,789 children under five. The data collection was carefully considered to ensure a 

representative sample that covers various child health indicators, including birth weight, birth height, age, weight, 

height, gender, and nutritional status. This comprehensive dataset provided a solid foundation for the subsequent 

analysis. Before the analysis, extensive data preprocessing was conducted to ensure the dataset was clean, consistent, 
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and ready for modelling. The preprocessing steps involved handling missing values, deleting duplicates, and 

normalization. The data after cleaning and handling missing values is shown in table 5. 

The categorical feature, gender, was then converted into a binary format using one-hot encoding. This step was crucial 

to make the data compatible with ML algorithms, as most models require numerical input. The encoding process 

resulted in new binary columns representing each category in the gender feature, which were then integrated back into 

the dataset. The data conversion results in one-hot encoding, as shown in table 6. 

Table 5. Sample Data Before and After Gender Encoding 

Birth 

Weight (kg) 

Birth 

Height (cm) 

Age 

(months) 

Weight (kg) Height (cm) Nutritional 

Status 

Gender_g Gender_g 

(Encoded) 

3.0 45.0 1 4.9 55.0 Good  girl 1 

3.2 49.0 1 4.5 55.6 Good  girl 1 

3.0 49.0 2 4.6 55.7 Good  girl 1 

3.2 49.0 2 5.8 62.1 Good  boy 0 

2.8 48.0 2 4.2 55.5 Good  boy 0 

Data balancing with oversampling helps to make the data more reliable by avoiding overfitting or underfitting the 

model. This technique ensures that the data represents the overall population, reducing the risk of biased or skewed 

results. The initial dataset consisted of 2,789 children under 5 years of age records, which included the following 

values: Good Nutrition, Moderate Malnutrition, Obesity, Overnutrition, Risk of Overnutrition, and Severe 

Malnutrition. After applying the oversampling method, the data was balanced to match the largest class, as shown in 

figure 2 (a) and (b). 

 

(a) 

 

(b) 

Figure 2. Original (a) and balanced data (b) 

After the SMOTE oversampling process, the data distribution in each nutritional status category becomes balanced, as 

shown in figure 2 (b). This is important to ensure that the classification model is not biased towards the majority class 

and has a fair ability to recognize all categories, including minority classes such as Severe Malnutrition and Obesity. 

The next step is training and testing the model based on the proposed pipeline. The training model uses balanced data, 

while the evaluation is based on unmodified test data. The two-level hybrid model, which consists of intermediate and 

late fusion, is tested against several evaluation metrics, including accuracy, precision, recall, F1-score, and 5-fold cross-

validation. This evaluation is carried out to ensure the model's prediction accuracy and the balance of sensitivity and 

specificity between classes. The results are shown in table 6 and the confidence matrix in figure 2 (b). 

Table 6. Evaluation Results of the Proposed Method 

Fold Acc Pre Rec F1 Spe AUC 

1 99.44 99.43 99.44 99.40 1.0  99.99 

2 99.81 99.82 99.81 99.78 1.0 99.99 
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3 99.81 99.82 99.81 99.78 1.0 99.99 

5 99.62 99.67 99.63 99.60 1.0 99.99 

5 99.81 99.82 99.81 99.78 1.0 99.99 

Average 99.70 99.71 99.70 99.67 1.0 99.99 

Std dev 0.17 0.17 0.16 0.17 0 0 

95% CI [99.57–99.83] [99.54–99.88] [99.57–99.83] [99.51–99.83] - - 

The evaluation results in table 6 show that the proposed model consistently achieved high performance across all 5-

fold cross-validation runs. The average accuracy reached 99.70%, with precision, recall, and F1-score values of 

99.71%, 99.70%, and 99.67%, respectively. The standard deviations for all metrics are below 0.2, indicating minimal 

variability and suggesting stable model behaviour across folds. Furthermore, the 95% confidence intervals for each 

metric affirm the robustness and statistical reliability of the results. In addition, the AUC value of 99.99% across all 

folds confirms the model's excellent discriminatory capability, while the perfect specificity (1.0) highlights its ability 

to avoid false positives—critical for avoiding misdiagnosis in nutritional assessments. 

However, we acknowledge that such consistently high-performance metrics with low variance may raise concerns 

regarding potential overfitting or data leakage. To mitigate this, several precautions were taken. First, the SMOTE 

technique was applied strictly only to the training data after the train-test split, ensuring that no synthetic samples 

contaminated the test set. Second, stratified 5-fold cross-validation was employed to preserve class distribution while 

maintaining a strict separation between training and validation folds. Third, the test data used for evaluation remained 

in its original, imbalanced form, thereby reflecting real-world class proportions and minimizing the risk of inflated 

performance due to artificial balance. 

To further validate the model's generalisation capability, we also conducted an independent hold-out test using a non-

overlapping subset that was never exposed to the model during cross-validation or training. The model demonstrated 

consistent performance on this external set, reinforcing the reliability of our proposed pipeline. Additionally, we 

rigorously examined the dataset for any duplicates or data leakage artefacts during preprocessing. These preventive 

steps ensure that the model's performance is not a byproduct of overfitting but a reflection of its effective integration 

of deep features, attention-based fusion, and ensemble classification. Figure 3(a) presents the cumulative confusion 

matrix, while figure 3 (b) shows the ROC-AUC curve from the 5-fold cross-validation results. Most predictions align 

along the diagonal, indicating strong per-class accuracy. Although minor inter-class misclassifications are present—

such as between class 1 (good nutrition) and class 2 (risk of overnutrition)—these instances are relatively infrequent 

and do not significantly degrade overall performance. This reinforces the hypothesis that the combination of SMOTE 

and dual-fusion architecture yields robust and informative feature representations capable of handling nuanced 

variations in class boundaries. 

 
(a) 

 
(b) 

Figure 3. The cumulative confusion matrix (a) ROC-AUC curve (b) obtained from 5-fold cross-validation 

4.2. Ablation Studies 

An ablation study was conducted on six model variants (M1–M6) to identify the contribution of each component in the 

proposed architecture, as presented in table 8. In addition to performance metrics, table 7 includes a new Structure 
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column that outlines the specific architectural flow for each variant, helping clarify the changes across configurations. 

In this experiment, Gradient Boosting was selected as the best baseline single classifier, as it previously showed 

superior performance compared to other models such as KNN, Bayesian Network, and SVM. 

Table 7. Ablation study results on different model configurations 

The baseline model (M1), which only uses classical features and Gradient Boosting without balancing or deep learning 

features, produces an accuracy of 90.84%, with an F1-score of 90.45% and an AUC of 90.76%. The improvement is 

immediately visible in M2, where the addition of SMOTE provides performance improvements in all metrics, proving 

the effectiveness of SMOTE in overcoming class imbalance. The M3 variant, which only relies on deep features from 

a 1D CNN with attention without SMOTE, shows a significant jump in performance, with an accuracy of 97.58%, an 

F1-score of 97.41%, and an AUC of 98.94%. This shows deep feature representation greatly improves classification 

capacity, even without data balancing. However, the specificity of this model is still relatively lower compared to the 

configuration using SMOTE. 

M4, a combination of SMOTE and an ensemble classifier, produces an F1-score of 91.28% and an AUC of 90.99% 

but still does not surpass the performance of M3. This shows that feature representation is more crucial than combining 

models without relevant deep features. Further performance improvements is observed in M5, where the combination 

of SMOTE data balancing technique with 1D-CNN and Attention feature extractor results in an F1-score of 98.09% 

and an AUC of 99.22%. M6, which represents the proposed method, integrates all components, including 1D-CNN, 

with additive attention and ensemble stacking. This configuration achieves the highest performance with an accuracy 

of 99.70%, F1-score of 99.67%, AUC of 99.99%, and a perfect specificity of 1.0. 

Key findings from this study show that the largest contribution comes from integrating deep features through 1D CNN 

and attention, which can capture non-linear representations more effectively than classical features. In addition, using 

SMOTE plays a significant role in maintaining the balance of performance between classes, while the ensemble 

stacking strategy strengthens the stability and generalization of the overall model. The combination of the three 

provides the most optimal and robust results. 

4.3. Comparison with Other Methods 

Previous studies have evaluated using ML algorithms to classify children's nutritional status. For example, a study [6] 

employed a range of algorithms and reported that RF and LR achieved the best performance, each with an accuracy of 

91.11% on the test data. In contrast, the SVM and KNN showed lower predictive accuracy, namely 77.61% and 

71.10%, respectively. Similarly, in [7], Random Forest again demonstrated superior performance with an AUC of 0.756 

Model 

Acc Pre Rec F1 Spe AUC 
Variant Structure SMOTE 

CNN 

1D 
Ensemble 

M1 
Classical features → Gradient 

Boosting Classifier 
✗ ✗ ✗ 90.84 90.86 90.84 90.45 0.90 90.76 

M2 
Classical features → SMOTE 

→ Gradient Boosting 
✔ ✗ ✗ 91.40 90.86 91.40 90.76 0.91 90.76 

M3 
Tabular input → CNN → 

Gradient Boosting Classifier 
✗ ✔ ✗ 97.58 97.60 97.58 97.41 0.97 98.94 

M4 

Classical features → SMOTE 

→ Ensemble/ Late Fusion 

Classifier 
✔ ✗ ✔ 91.24 91.48 91.24 91.28 0.92 90.99 

M5 

Classical + CNN features → 

SMOTE → Intermediate Fusion 

→ Gradient Boosting Classifier 
✔ ✔ ✗ 98.51 98.40 98.51 98.09 0.98 99.22 

M6 

Proposed 

Classical + CNN features → 

SMOTE → Intermediate Fusion 

→ Ensemble/ Late Fusion 

Classifier 

✔ ✔ ✔ 99.70 99.71 99.70 99.67 1.0 99.99 
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and an accuracy of 67.6%. In contrast, Generalized Linear Model (GLM) and Neural Network (NN) underperformed 

with accuracies of 37.1% and 64.6%, and AUC values of 0.697, respectively. A more recent study [42] from India 

utilized TabNet and reported high accuracy and AUC values of 96.46% and 97.19%, outperforming classical models 

such as LR, RF, XGBoost, and ANN. Table 8 summarizes the best-performing algorithms reported in prior research. 

Table 8. Comparison with Other Methods 

Ref Best algorithm Acc AUC 

[6] RF/LR 91.11 - 

[7] RF 67.60 75.60 

[42] TabNet 96.46 97.19 

Ours Dual fusion+ SMOTE 99.71 99.99 

While Random Forest emerges as a consistently strong baseline across various studies, and TabNet shows promising 

deep learning-based results, the proposed model in this study achieves a markedly higher performance, with an 

accuracy of 99.71% and an AUC of 99.99%. This significant improvement can be attributed to several key innovations 

in our method. First, the integration of 1D-CNN allows the model to capture complex, non-linear relationships that 

classical models may overlook, particularly in tabular health datasets. Second, additive attention enhances the model’s 

ability to weigh feature importance dynamically, offering a more nuanced representation than simple feature 

concatenation. Third, the ensemble stacking strategy adds robustness by combining the strengths of diverse classifiers, 

mitigating the individual weaknesses of base models. It is also important to note that, unlike previous studies that relied 

solely on conventional tabular features or AutoML pipelines, our approach explicitly addresses class imbalance using 

SMOTE, ensuring that rare cases such as severe malnutrition are not underrepresented during training. Additionally, 

the model was evaluated on unaltered test data, preserving real-world class distributions and avoiding artificial 

performance inflation. 

5. Conclusion 

This study introduced a dual-fusion hybrid approach that integrates deep learning, attention-based intermediate fusion, 

and ensemble classification for predicting the nutritional status of children under five. Integrating 1D-CNN and additive 

attention effectively enhances feature representation beyond classical anthropometric data. SMOTE addressed the class 

imbalance, while ensemble stacking enhanced model robustness and generalization. The proposed model outperforms 

traditional ML methods, achieving an average accuracy of 99.70% and an AUC of 99.99%, surpassing several baseline 

and state-of-the-art models.  

This framework shows strong potential for real-world deployment in community health settings, where early and 

accurate nutritional screening can support targeted interventions. However, the model’s performance is evaluated on a 

regional dataset, which may limit generalizability across broader populations with different sociodemographic profiles 

or health conditions. For future research, extending the dataset to include national-level samples, integrating temporal 

growth trends, and exploring interpretability techniques such as SHAP or LIME could improve model reliability and 

explainability in public health decision-making. Real-time or mobile-based implementation is also a promising 

direction to enable wider accessibility and usability in low-resource environments. 
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