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Abstract 

Stunting remains a critical public health concern in Indonesia, with long-term consequences for physical growth, cognitive development, and 

human capital. This study introduces a hybrid machine learning framework to predict household-level stunting risk by integrating Synthetic 

Minority Over-sampling Technique with Edited Nearest Neighbors (SMOTEENN), soft voting ensemble, and SHapley Additive exPlanations 

(SHAP). The objective is to enhance both predictive accuracy and interpretability in identifying high-risk households. A dataset of 115,579 

household records from West Sumatra, comprising 20 demographic, socioeconomic, health, and housing predictors, was utilized. Preprocessing 

steps included handling missing values, categorical encoding, and applying SMOTEENN exclusively on the training set to mitigate class 

imbalance. The baseline models demonstrated limited sensitivity, with XGBoost performing best at 74.56% accuracy and 71.08% F1-score on 

imbalanced data. After applying SMOTEENN, performance improved substantially, with XGBoost achieving 91.82% accuracy and 91.74% F1-

score. Further improvements were obtained through hybridization, where the Random Forest and XGBoost soft voting ensemble reached 91.95% 

accuracy and 92.46% F1-score, representing a notable gain over individual classifiers. SHAP analysis added interpretability by identifying family 

members, education level, diverse food consumption, occupation, and drinking water source as dominant predictors of stunting risk. The novelty 

of this study lies in the integration of SMOTEENN with ensemble learning and SHAP, providing not only robust performance but also 

transparency in feature contributions. The findings demonstrate that the proposed framework improves sensitivity to minority classes, delivers 

superior predictive accuracy compared to baseline models, and offers interpretable insights to guide targeted interventions. By combining 

methodological rigor with explainability, this research contributes a practical decision-support tool for policymakers, supporting early detection 

of at-risk households and accelerating stunting reduction efforts in Indonesia. 

Keywords: Stunting Prediction, Hybrid Machine Learning, SMOTEENN, Soft Voting Ensemble, SHAP Interpretability, Class Imbalance, Public Health, 
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1. Introduction  

Stunting remains a critical global health challenge with long-term implications for human capital development. In 

Indonesia, it continues to be a priority issue, with the prevalence in West Sumatra reaching 23.6% in 2024, still above 

the national reduction target set by the Ministry of Health [1]. Beyond impairing physical growth, stunting also affects 

cognitive development, ultimately diminishing human resource quality and violating children’s rights to optimal 

growth and development [2]. These pressing concerns highlight the importance of developing accurate and reliable 

predictive models that can guide more effective public health policies and targeted interventions. However, it must also 

be emphasized that prediction alone does not directly reduce stunting. The true impact of predictive modeling can only 

be realized when integrated into broader intervention frameworks, such as nutritional programs, maternal and child 

health services, and community-based education initiatives. 

Despite the potential of machine learning in public health, predictive modeling for stunting often encounters serious 

challenges due to class imbalance in the data. Households at risk of stunting typically represent a minority compared 

to those not at risk, leading conventional algorithms to be biased toward the majority class [3]. This bias can result in 

deceptively high overall accuracy while failing to adequately detect the minority group most in need of intervention 
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[4]. Addressing this imbalance is therefore crucial to improving the sensitivity and fairness of predictive models in 

stunting risk classification. 

The Synthetic Minority Oversampling Technique (SMOTE) has been widely applied to rebalance imbalanced datasets 

by generating synthetic minority samples. However, SMOTE alone tends to produce overlapping instances near 

decision boundaries, which may increase misclassification [5]. To mitigate this drawback, SMOTE can be combined 

with Edited Nearest Neighbors (ENN), forming the hybrid method SMOTEENN. ENN removes noisy or ambiguous 

majority-class samples located near the minority boundary, thereby improving class separability and model 

performance [6]. Prior studies [7] on monkeypox case classification have shown that SMOTEENN significantly 

improves accuracy and F1-score compared to SMOTE alone, highlighting its suitability for imbalanced health-related 

datasets such as stunting. 

Beyond class rebalancing, further performance improvements can be achieved through ensemble learning techniques. 

Ensemble methods integrate predictions from multiple base learners, reducing variance and improving robustness 

compared to individual models [8]. Among these, soft voting ensembles have demonstrated superior performance. For 

example, prior studies [9] reported accuracy improvements ranging from 3% to 9% compared to individual classifiers, 

underscoring their ability to capture complementary strengths of diverse models while enhancing detection of minority 

classes. 

Nevertheless, achieving high accuracy is insufficient if models remain opaque to policymakers and health practitioners. 

In public health contexts, interpretability is essential to ensure that model outputs can be trusted and effectively 

translated into targeted interventions. SHAP addresses this need by quantifying the contribution of each feature to 

individual predictions using cooperative game theory principles [10]. By enabling both global and local interpretability, 

SHAP increases the transparency and practical value of predictive models, allowing them to function not merely as 

analytical tools but as actionable decision-support systems within stunting reduction programs. 

To address these challenges, this study introduces a hybrid machine learning framework that combines SMOTEENN 

for managing class imbalance, Soft Voting Ensemble (SVE) for robust classification, and SHAP for interpretability. 

This integrated approach seeks to overcome the limitations of previous studies that treated resampling, ensemble 

learning, and interpretability in isolation. Specifically, the objectives are twofold: (i) to enhance predictive accuracy 

and sensitivity in detecting at-risk households, thereby improving the fairness of classification under imbalanced 

conditions, and (ii) to provide transparent explanations of feature contributions, ensuring that the model’s insights can 

be meaningfully applied in public health decision-making. By bridging technical performance with interpretability, the 

proposed framework aspires not only to improve risk prediction but also to serve as a practical decision-support tool 

that can inform targeted interventions, strengthen policy design, and ultimately contribute to accelerating stunting 

reduction efforts in Indonesia. 

2. Literature Review  

Machine learning has been increasingly applied in public health research to predict and understand complex phenomena 

such as childhood stunting. Various algorithms and preprocessing techniques have been explored, ranging from 

traditional classifiers like Logistic Regression (LR) to more advanced ensemble methods such as Random Forest (RF), 

Gradient Boosting (GB), and XGBoost [11]. These methods have been tested on different demographic and health 

survey datasets across countries, highlighting both their potential and their limitations in handling class imbalance and 

ensuring model interpretability. 

While the reported findings are promising, prior research has often focused on either feature engineering or resampling 

in isolation. For instance, studies utilizing feature selection improved accuracy but did not fully address class imbalance 

[12], while those applying resampling techniques such as SMOTE enhanced balance but sometimes suffered from 

overlapping synthetic samples near decision boundaries [13], [14]. Similarly, ensemble methods such as RF and GB 

showed strong predictive performance, yet their application was rarely combined with advanced resampling to further 

improve sensitivity in minority class detection. Another limitation is the minimal emphasis on interpretability, which 

is critical in public health applications where model transparency is essential to translate predictions into actionable 
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interventions. To provide a clearer overview of prior efforts in this domain, table 1 presents a summary of recent studies 

on stunting risk prediction using machine learning. 

Table 1. Previous Studies On Machine Learning For Stunting Risk Prediction 

Researcher Method Dataset Preprocessing Main Findings 

[11] 
LR, RF, SVM, NB, 

XGBoost, GB 

Rwanda Demographic and Health 

Survey (RDHS), 4052 samples 
Feature selection 

Best model GB achieved 

80.49% accuracy 

[12] 

LR, CTree, 

XGBoost, SVM-

RBF 

Papua New Guinea Demographic 

and Health Survey (PNG DHS), 

19.200 samples 

Feature selection 

(LASSO, RF-RFE) 

Best model LASSO-

XGBoost achieved 72.8% 

accuracy 

[13] 
XGBoost, RF, 

SVM, KNN 

Kaggle stunting dataset (Indonesia), 

10.000 samples 
SMOTE 

XGBoost with SMOTE 

achieved 85.74% accuracy 

[14] 

SVM, GNB, LR, 

DT, RF, LGB, 

XGB, KNN 

Ethiopian Demographic and Health 

Survey (EDHS), 15.683 samples 

SMOTE + feature 

selection 

RF with SMOTE and 

feature selection achieved 

77% accuracy 

This study 
LR, RF, SVM, 

XGBoost, SVE 

Stunting risk dataset, West Sumatra 

(Indonesia), 115.579 samples 
SMOTEENN 

Improved accuracy on 

imbalanced data and 

enhanced interpretability 

As shown in  table 1, prior research has provided valuable insights into the application of machine learning for stunting 

risk prediction across multiple contexts. However, most studies emphasized either feature engineering or resampling 

in isolation, with limited integration of both strategies, and only minimal attention to interpretability. To overcome 

these gaps, the present study proposes a hybrid framework that combines SMOTEENN to effectively manage class 

imbalance, SVE to enhance classification robustness, and SHAP for model interpretability, thereby offering a more 

comprehensive and transparent approach for stunting risk prediction. 

3. Methodology  

To provide a clear overview of the research process, the workflow of this study is illustrated in figure 1. This workflow 

outlines the sequential steps taken, starting from dataset preparation to model interpretation, ensuring a systematic 

approach toward stunting risk prediction. 

 

Figure 1. Research Workflow 

Figure 1 illustrates the overall workflow of this research, which begins with dataset description and preprocessing to 

ensure data readiness. The next step involves the development of baseline classification models both without and with 

SMOTEENN, where SMOTEENN is applied to address the issue of class imbalance. Each classifier, including Logistic 
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Regression, Random Forest, Support Vector Machine, and XGBoost, undergoes hyperparameter optimization to 

enhance predictive performance. The optimized models are then integrated through a soft voting ensemble scheme, in 

which accuracy-based weighting is used to construct hybrid models with different classifier combinations. Following 

model construction, performance evaluation is conducted using multiple metrics to assess classification effectiveness. 

Finally, SHAP analysis is employed to interpret the model and identify the most influential features contributing to 

stunting risk prediction. 

3.1. Dataset Description 

This study employed secondary data derived from the Pemutakhiran Pendataan Keluarga (family data updating 

survey) conducted by the National Population and Family Planning Board (BKKBN), West Sumatra Province, in 2023. 

The details of each variable are presented in table 2. 

Table 2. Dataset Description 

No Feature Type Description 

1 Family Members (X1) Ratio Number of family members 

2 Marital Status (X2) Nominal 1 = Single; 2 = Married; 3 = Divorced; 4 = Widowed 

3 Mother’s Age at First Marriage (X3) Ratio Age of mother at first marriage 

4 Occupation (X4) Nominal 
1 = Unemployed; 2 = Farmer; 3 = Fisherman; 4 = Trader; 

5 = Civil Servant; 6 = Private Employee; 7 = Daily Laborer 

5 Education Level (X5) Ordinal 
1 = No Education; 2 = Elementary; 3 = Junior High; 

4 = Senior High; 5 = Higher Education 

6 Health Insurance Type (X6) Nominal 1 = BPJS-PBI; 2 = BPJS-Non PBI; 3 = Private; 4 = None 

7 Regular Worship (X7) Nominal 1 = Yes; 0 = No 

8 Income Source Ownership (X8) Nominal 1 = Yes; 0 = No 

9 Diverse Food Consumption (X9) Nominal 1 = Yes; 0 = No 

10 Asset Ownership (X10) Nominal 1 = Yes; 0 = No 

11 Participation in Social Activities (X11) Nominal 1 = Yes; 0 = No 

12 Main Lighting Source (X12) Nominal 1 = Yes; 0 = No 

13 Cooking Fuel (X13) Nominal 1 = Yes; 0 = No 

14 Family Planning Education (X14) Nominal 1 = Yes; 0 = No 

15 Online Media Access (X15) Nominal 1 = Yes; 0 = No 

16 Floor Condition (X16) Nominal 1 = Decent; 0 = Not Decent 

17 Roof Condition (X17) Nominal 1 = Decent; 0 = Not Decent 

18 Drinking Water Source (X18) Nominal 1 = Decent; 0 = Not Decent 

19 House Condition (X19) Nominal 1 = Decent; 0 = Not Decent 

20 Toilet Sanitation (X20) Nominal 1 = Decent; 0 = Not Decent 

21 Stunting Risk (Y) Nominal 1 = At Risk; 0 = Not at Risk 

The dataset provides comprehensive information on family-level social, economic, demographic characteristics, and 

stunting risk indicators. The initial population comprised 132,921 households, of which 115,579 valid records were 

retained after data cleaning. Each record corresponds to one household and includes multiple socio-demographic and 

economic attributes. Binary variables (coded as 1 = Yes and 0 = No) were obtained from structured household 

interviews conducted by trained enumerators, with responses validated through BKKBN’s quality control procedures. 

This large-scale dataset offers a unique advantage by representing diverse socio-economic and demographic conditions 

across West Sumatra, making it highly suitable for developing and validating predictive models in public health 

research [15]. 
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3.2. Data Preprocessing 

3.2.1. Handling Missing Values 

Before modeling was conducted, the data underwent a preprocessing stage to ensure quality, consistency, and readiness 

for training. This step is crucial to prevent bias and prediction errors that may arise from inconsistent scales or formats 

within the dataset [16]. The first step involved handling missing values, where rows or columns with a large proportion 

of missing entries and deemed unrepresentative for analysis were removed to maintain data quality. The choice of 

missing value treatment method was based on the data distribution, the proportion of missing entries, and their potential 

impact on the analysis, thereby minimizing bias in the model’s results. 

3.2.2. Feature Encoding 

In this study, label encoding was applied to categorical attributes to convert text-based responses into numerical 

representations so that they could be processed by machine learning algorithms. For nominal variables, the encoding 

served purely as identifiers without implying any order or ranking among categories [17]. For instance, binary attributes 

such as Online Media Access or Asset Ownership were encoded into 1 = Yes and 0 = No, while multi-category variables 

such as Occupation or Health Insurance Type were assigned integer codes to represent distinct categories. For ordinal 

variables such as Education Level, the encoded values reflected the inherent order (e.g., 1 = No Education to 5 = Higher 

Education). This approach ensured that the encoding captured both the nominal meaning of unordered variables and 

the ordinal meaning where applicable, without introducing artificial relationships. 

3.2.3. SMOTEENN for Handling Imbalanced Data 

At this stage, the preprocessed data were subjected to class balancing techniques to address the issue of imbalanced 

distribution between stunting risk and non-risk households. This study adopted the SMOTEENN method, which 

combines the oversampling strategy of the SMOTE with the undersampling approach of ENN. SMOTE works by 

generating synthetic minority class samples based on feature-space similarities between existing minority instances, 

thereby increasing their representation within the dataset [18]. However, synthetic oversampling alone may lead to 

class overlapping near decision boundaries. To mitigate this, ENN is applied subsequently to remove noisy or 

misclassified majority-class samples, refining the dataset and enhancing class separability. The hybridization of 

SMOTE and ENN ensures a more balanced, cleaner dataset that improves model sensitivity toward minority cases 

while maintaining generalization performance [19]. The sequential process of SMOTEENN applied in this study is 

summarized in table 3. 

Table 3. The SMOTEENN Algorithm Applied In This Study 

Phase Process 

Input Dataset 𝑥, Consists of majority samples (𝑥𝑚𝑎𝑗) and minority samples (𝑥𝑚𝑖𝑛). 

SMOTE (oversampling) 

1. Determine oversampling ratio (IR).  

2. For each minority sample 𝑥𝑚𝑖𝑛: 

- Compute Euclidean distance to other minority samples. 

- Identify 𝑘1 nearest neighbors. 

- For 𝐼 = 1, … , 𝐼𝑅, randomly select one neighbor and generate a new synthetic instance 𝑥𝑛𝑒𝑤  

by interpolation between 𝑥𝑚𝑖𝑛  and its neighbor. 

3. Add 𝑥𝑛𝑒𝑤  to the minority class. 

ENN (undersampling) 

For each sample 𝑥𝑖 in the SMOTE dataset (minority and majority): 

- Compute Euclidean distance to other samples. 

- Identify 𝑘2 nearest neighbors. 

- Determine the majority label among neighbors. 

- If the label of 𝑥𝑖 differs from the majority, remove 𝑥𝑖 (considered as noisy). 

- Otherwise, retain 𝑥𝑖. 

Output 
Resampled dataset 𝑥′, Balanced through SMOTE oversampling and cleaned from outliers or 

noisy samples using ENN. 
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In this study, the oversampling ratio (IR) and the number of nearest neighbors (k) were determined through a 

combination of empirical testing and validation. The IR was adaptively set to achieve a target balance of 1:1 between 

minority and majority classes within each training split, ensuring that the minority class was sufficiently represented 

before applying ENN. For the SMOTE phase, the number of nearest neighbors was tuned within the range 𝑘1 ∈ {3,5,7} 

using inner 5-fold cross-validation, with 𝑘1 = 5 yielding the best trade-off between recall and F1-score for the minority 

class. For the ENN phase, we compared 𝑘2 ∈ {3,5} and selected 𝑘2 = 3, as this setting effectively removed noisy 

samples near decision boundaries while preserving sensitivity to minority cases. These hyperparameters were applied 

exclusively on the training data, with the test set kept untouched to avoid data leakage. 

3.3. Machine Learning Algorithms 

3.3.1. Logistic Regression 

LR is a widely used statistical method for binary classification. It maps input values to a probability ranging from 0 to 

1, estimating the likelihood that a given instance belongs to the positive class (1) rather than the negative class (0). The 

model is constructed by fitting a linear equation with the input features, but instead of predicting the binary outcome 

directly, it models the natural logarithm of the odds of the positive class. This value is then transformed into a 

probability through the logistic, or Sigmoid function, producing an output between 0 and 1 that represents the predicted 

likelihood [20]. Mathematically, the LR method can be expressed as follows. 

𝑃(𝑌 = 1|𝑋) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘)
 (1) 

𝑃(𝑌 = 1|𝑋) represents the probability of the dependent variable 𝑌 being equal to 1 given the input features 𝑋, and 

(𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘) are the model parameters that need to be estimated from the training data. 

3.3.2. Random Forest 

Random Forest is one of the methods belonging to the decision tree family. This approach constructs multiple decision 

trees consisting of root nodes, internal nodes, and leaf nodes, where both attribute selection and data sampling are 

performed randomly according to specific rules. The root node functions as the starting point of data processing, the 

internal nodes represent questions or splitting criteria based on attributes, while the leaf nodes indicate the final outcome 

of the decision or classification [21]. The process begins by randomly selecting a training subset from the overall 

training dataset. Each decision tree in the forest is generated and trained using this subset. 

𝑦̂ =
1

𝑁𝑡𝑟𝑒𝑒𝑠
∑ 𝑦𝑖

𝑁𝑡𝑟𝑒𝑒𝑠

𝑖=1
 (2) 

𝑦̂ represents the final prediction or output of the random forest model. The variable 𝑁𝑡𝑟𝑒𝑒𝑠 denotes the total number of 

decision trees within the forest, and each 𝑦𝑖 corresponds to the individual prediction made by the 𝑖 -th decision tree. 

3.3.3. Support Vector Machine 

Support Vector Machine (SVM) is a machine learning algorithm designed to classify data by mapping it into a high-

dimensional feature space using a nonlinear mapping function [22]. The training data, represented as vectors 𝑥⃗𝑖, is 

classified into two categories, denoted as 𝑦⃗𝑖, which can take the values -1 or 1, as shown in the formula: 

𝐺 = (𝑥⃗𝑖 ∈ ℝ𝑛; 𝑦⃗𝑖 = −1 𝑜𝑟 1; 𝑖 = 1,2, … , 𝑁) (3) 

The goal of SVM is to find the optimal hyperplane that best separates the two classes in this feature space. The 

algorithm begins by identifying the points in each class that are closest to the separating hyperplane these points are 

known as the support vectors [22]. Once the support vectors are determined, the distance between the hyperplane and 

these points is calculated. This distance is called the margin, and the primary objective of SVM is to maximize the 

margin. A larger margin indicates better generalization and separation between the classes, thus producing a more 

robust classifier. By maximizing the margin, SVM effectively minimizes the classification error on both the training 

and unseen data, ensuring high classification performance. 
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3.3.4. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is an algorithm developed from the Gradient Boosting Decision Tree (GBDT) 

framework and is designed to efficiently build boosted trees with parallel execution capability. As an ensemble learning 

technique, XGBoost has proven highly effective for solving both classification and regression problems. The algorithm 

constructs an ensemble of decision trees sequentially, where each new tree attempts to correct the residual errors of the 

previous ones using the gradient boosting approach. In the regression tree structure employed by XGBoost, the internal 

nodes represent attribute test values, while the leaf nodes contain scores that reflect the final decision [23]. The final 

prediction is obtained by summing the scores generated by all 𝐾 trees, as expressed in the following equation (4). 

Loss𝑋𝐺𝐵𝑜𝑜𝑠𝑡 = ∑ 𝐿(𝑦̂𝑛, 𝑦𝑛) + ∑ Ω(𝑓𝑚)
𝑀

𝑚=1
,

𝑁

𝑛=1
 

(4) 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2. 

(5) 

XGBoost is a machine learning algorithm that aims to minimize a loss function, Loss𝑋𝐺𝐵𝑜𝑜𝑠𝑡, which quantifies the 

error between model predictions and actual values. It operates on a dataset represented as a sequence of data points, 

𝑋𝑛, where each data point includes a feature vector and a target value. The discrepancy between model predictions and 

actual values for each data point is measured using a specific loss function, 𝐿(𝑦̂𝑛, 𝑦𝑛). To control model complexity 

and prevent overfitting, XGBoost employs the term Ω(𝑓), consisting of two components: 𝛾𝑇, which is related to the 

number of leaves in the model, and 𝜆‖𝑤‖2, where 𝜆 is a control constant and 𝑤 is a vector. 

3.4. Soft Voting Ensemble for Hybrid Model 

Voting ensemble is one of the most common forms of ensemble learning, a machine learning approach that combines 

multiple models to improve prediction accuracy and stability. The main objective of this method is to produce a final 

model that outperforms the performance of each individual classifier [24]. By aggregating the strengths of different 

algorithms, ensemble learning can capture both linear and non-linear relationships in the data, making it a powerful 

aggregation technique that has been widely adopted in statistics and machine learning for more than a decade [25].  

Unlike hard voting, which relies solely on majority rule, soft voting leverages probabilistic weighting to better capture 

the confidence levels of each model, thereby reducing variance and improving robustness [26]. This hybrid approach 

allows the system to exploit the complementary strengths of linear and non-linear classifiers, resulting in improved 

accuracy and sensitivity, particularly in detecting minority cases of stunting risk. In soft voting, the final class label of 

the response variable is determined based on the predicted probability 𝑝 from each base classifier. The ensemble 

prediction is obtained using the following equation (6). 

𝑦̂ = arg max  ∑ 𝑤𝑗𝑝𝑗(𝑐)
𝑀

𝑗=1
 (6) 

where 𝑦̂ denotes the predicted class label, 𝑀 is the total number of classifiers, 𝑝𝑗(𝑐) is the probability predicted by the 

𝑗-th classifier for class 𝑐, and 𝑤𝑗 is the weight assigned to the 𝑗-th classifier, which can be adjusted according to its 

performance. The novelty of this study lies in the weighting mechanism of the base classifiers in the soft voting 

ensemble. Unlike conventional soft voting where model weights are set arbitrarily or equally, in this research the 

weights were assigned proportionally according to the accuracy of each model relative to the combined accuracy of all 

models [26]. The weighting scheme is defined as follows equation (7). 

𝑊𝑒𝑖𝑔ℎ𝑡𝑚𝑜𝑑𝑒𝑙𝑖
=

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑜𝑑𝑒𝑙𝑖

∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑜𝑑𝑒𝑙𝑗

𝑛
𝑗=1

 (7) 

In this study, accuracy was chosen as the weighting criterion for the soft voting ensemble because it provides a 

straightforward and consistent measure across all base models, thereby facilitating direct comparison and integration. 

Models that produce more reliable predictions are assigned higher weights to ensure that the final result is not 
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disproportionately influenced by any single model [26]. The combinations consist of baseline individual models, hybrid 

models with two, three, and four classifiers, as summarized in table 4. 

Table 4. Hybrid Machine Learning Model Combinations 

No Model Type Number of Models Hybrid Model Combinations 

1 Baseline 4 LR, RF, SVM, XGBoost 

2 Hybrid-2 6 LR+RF, LR+SVM, LR+XGBoost, RF+SVM, RF+XGBoost, SVM+XGBoost 

3 Hybrid-3 4 LR+RF+SVM, LR+RF+XGBoost, LR+SVM+XGBoost, RF+SVM+XGBoost 

4 Hybrid-4 1 LR+RF+SVM+XGBoost 

The hybrid model combinations in table 4 were selected based on diversity and performance considerations rather than 

random choice. LR, RF, SVM, and XGBoost were chosen as baseline models because they represent different learning 

paradigms. Hybrid ensembles were then constructed by systematically combining these models to leverage their 

complementary strengths, in line with the principle that diversity among classifiers improves ensemble performance 

[26]. 

3.5. Evaluation Metrics 

The actual data and the predicted results from the classification model are represented using a cross-tabulation known 

as the confusion matrix. This matrix provides detailed information about the relationship between the true class labels 

(rows) and the predicted class labels (columns), enabling evaluation of the model’s classification performance [27]. 

The structure of the confusion matrix is shown in table 5. 

Table 5. Confusion Matrix 

Real Class Predicted Positive Class Predicted Negative Class 

Real Positive Class True Positive (TP) False Negative (FN) 

Real Negative Class False Positive (FP) True Negative (TN) 

As shown in table 5, the confusion matrix summarizes model performance by cross-tabulating actual versus predicted 

classes: true positives (TP) are households correctly identified as at risk of stunting, false positives (FP) are non-risk 

households incorrectly labeled as at risk, true negatives (TN) are households correctly identified as not at risk, and false 

negatives (FN) are at-risk households missed by the model. Based on this matrix, precision expresses how reliable 

positive predictions are (the share of predicted at-risk households that are truly at risk), while recall or sensitivity 

captures how completely the model identifies actual at-risk households (the share of truly at-risk households that the 

model flags). The F1-score provides a single, balanced indicator that harmonizes precision and recall, which is 

especially useful under class imbalance. Finally, accuracy reflects the overall proportion of correct classifications 

across both at-risk and not-at-risk households. 

3.6. SHAP for Interpretability Model 

To ensure that the predictive model is not only accurate but also transparent and interpretable, this study employed 

SHAP as a post-hoc interpretability technique. SHAP computes the contribution of each feature to the prediction 

outcome in an additive manner, thereby enabling interpretation at both global and local levels [28]. SHAP is an 

explainability method for machine learning models that is grounded in cooperative game theory through the use of 

Shapley values. The main idea of SHAP is to calculate the Shapley value for each feature of a given instance, where 

each value represents the marginal impact of that feature on the prediction [29]. A model prediction can be represented 

using shapley as follows: 

𝑦̂𝑖 = 𝑠ℎ𝑎𝑝0 + 𝑠ℎ𝑎𝑝(𝑋1𝑖) + 𝑠ℎ𝑎𝑝(𝑋2𝑖) + ⋯ + 𝑠ℎ𝑎𝑝(𝑋𝑗𝑖) (8) 

where 𝑦̂𝑖 denotes the prediction for the 𝑖-th instance, 𝑠ℎ𝑎𝑝0 = 𝔼(𝑦̂𝑖) represents the global average prediction, and 

𝑠ℎ𝑎𝑝(𝑋𝑗𝑖) indicates the contribution of the 𝑗-th feature for the 𝑖-th instance. This additive decomposition allows each 

prediction to be explained as the sum of a global baseline and the marginal contributions of individual features, thereby 

providing both global and local interpretability of the model [30]. 
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4. Results and Discussion 

4.1.  Data Preprocessing 

Prior to model construction, several preprocessing steps were applied to ensure data quality and consistency. First, 

records with incomplete or invalid information were removed, resulting in 115,579 valid household entries from the 

initial population of 132,921. Next, categorical variables were transformed into numerical representations using label 

encoding, allowing both nominal and ordinal predictors to be processed by machine learning algorithms. After 

encoding, the dataset was divided into training and testing subsets with an 80:20 stratified split, ensuring that the class 

distribution of stunting risk was preserved in both sets. To address the class imbalance, the SMOTEENN technique 

was applied exclusively to the training data, combining oversampling of the minority class with noise reduction from 

the majority class. This approach ensured that the testing data remained in its original distribution, thereby providing 

an unbiased evaluation of the model’s predictive performance. The application of resampling techniques significantly 

changed the class distribution in the training dataset, while the test dataset was kept in its original form to ensure 

unbiased evaluation. Table 6 shows the comparison of class distributions. 

Table 6. Number of Observations BEFORE and After SMOTEENN 

  Train Percent Test Percent 

Original 

Risk stunting 32696 35.36% 8174 35.36% 

Non-risk stunting 59767 64.64% 14942 64.64% 

All 92463 100.00% 23116 100.00% 

SMOTE 

Risk stunting 59767 50.00% 8174 35.36% 

Non-risk stunting 59767 50.00% 14942 64.64% 

All 92463 100.00% 23116 100.00% 

SMOTEENN 

Risk stunting 32886 47.08% 8174 35.36% 

Non-risk stunting 36959 52.92% 14942 64.64% 

All 69845 100.00% 23116 100.00% 

As shown in table 6, SMOTE balances both classes exactly at 50:50, whereas SMOTEENN not only oversamples the 

minority class but also removes noisy samples from the majority class, resulting in a slightly imbalanced but cleaner 

dataset (47.08% vs. 52.92%). A chi-square test of independence was performed to assess changes in class distribution 

before and after resampling. The results indicated a highly significant difference across the three datasets (χ² = 4780.18, 

p < 0.05). This finding confirms that both SMOTE and SMOTEENN substantially altered the distribution of stunting 

risk classes compared to the original dataset. In other words, the rebalancing procedures not only adjusted class 

proportions but also introduced a statistically significant shift, thereby supporting the validity of the preprocessing step. 

The changes in class distribution before and after the application of SMOTEENN can be visualized in figure 2. 

 
Figure 2. Comparison of Class Distributions: Original, SMOTE, and SMOTEENN 

4.2. Performance Without SMOTEENN 

Before evaluating the classification models, hyperparameter optimization was carried out using cross-validation to 

obtain the best configuration for each algorithm. Table 7 summarizes the range of hyperparameters tested, the optimal 

values selected, and the corresponding cross-validation scores. 
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Table 7. Best Hyperparameter For Models 

Real Class Hyperparameter Range Best Hyperparameter CV Score 

LR C [0.01, 0.1, 1, 10, 100] C = 0.01 0.7213 

RF 

n_estimator 

max_depth 

min_samples_split 

[100, 200, 500] 

[5, 10, 20] 

[2, 5, 10] 

n_estimator = 100 

max_depth = 5 

min_samples_split = 10 

0.7388 

SVM 
C 

kernel 

[0.01, 0.1, 1, 10, 100] 

[‘rbf’, ‘poly’, ‘linear’] 

C = 1 

kernel = ‘rbf’ 
0.7261 

XGBoost 

n_estimator 

max_depth 

learning rate 

[100, 200, 500] 

[3, 5, 10] 

[0.01, 0.1, 0.3] 

n_estimator = 100 

max_depth = 5 

learning rate = 0.1 

0.7428 

Using the optimized configurations, all models were first trained on the original imbalanced dataset without the 

application of SMOTEENN. The evaluation outcomes, as presented in table 8, reveal that although the overall accuracy 

values ranged between 72%–75%, this metric alone is misleading given the skewed class distribution. A closer 

inspection shows that the recall values were consistently lower across all models, highlighting a significant limitation 

in their ability to correctly identify households at risk of stunting. 

Table 8. Performance of Baseline Models without SMOTEENN 

Model Accuracy Precision Recall F1 Score 

LR 72.49 70.26 66.50 67.28 

RF 74.00 72.09 68.49 69.37 

SVM 72.89 72.00 65.46 66.18 

XGBoost 74.56 72.27 70.45 71.08 

This suggests that the models were biased toward the majority class, producing acceptable accuracy at the expense of 

failing to capture minority class instances, which are the primary focus of the study. Among the baseline models, 

XGBoost demonstrated the most promising performance, reaching an accuracy of 74.56% and an F1-score of 71.08, 

outperforming the other algorithms in balancing precision and recall. Nonetheless, the relatively low recall underscores 

the necessity of addressing class imbalance through advanced resampling techniques such as SMOTEENN to improve 

the detection of high-risk households. The details of model misclassifications can be observed in the confusion matrix, 

as presented in figure 3. 

    

Figure 3. Confusion Matrix without SMOTEENN 

4.3. Performance After Using SMOTEENN 

In the second experiment, model training was conducted using the SMOTEENN technique applied to the training 

dataset in order to address the issue of class imbalance. This approach was expected to improve the models’ ability to 

detect minority cases (households at risk of stunting) while maintaining overall predictive performance. After applying 

SMOTEENN on the training dataset, the performance of the classification models showed a substantial improvement 

compared to the baseline scenario. As presented in table 9, all models achieved higher accuracy, precision, recall, and 

F1-scores, indicating that the class balancing procedure significantly enhanced the ability of the models to correctly 

identify households at risk of stunting. 
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Table 9. Performance of Models with SMOTEENN 

Model Accuracy Precision Recall F1 Score 

LR 85.78 85.74 85.73 85.73 

RF 91.72 91.73 91.64 91.68 

SVM 87.61 87.57 87.56 87.56 

XGBoost 91.82 91.84 91.74 91.74 

The ensemble-based methods demonstrated the strongest performance, with Random Forest reaching an accuracy of 

91.72% and XGBoost slightly outperforming with 91.82%. The consistent improvement across all metrics highlights 

the effectiveness of SMOTEENN in handling class imbalance, leading to more robust and reliable predictions. These 

improvements are further illustrated in the confusion matrix after applying SMOTEENN, as shown in figure 4. 

    

Figure 4. Confusion Matrix with SMOTEENN 

4.4. Performance Hybrid Model Soft Voting Ensemble 

In the final stage of experimentation, the optimized base classifiers were combined using the SVE approach. Unlike 

the baseline models, this ensemble method assigned weights to each classifier proportionally to its accuracy, ensuring 

that models with stronger predictive ability contributed more to the final decision. The evaluation results for individual 

models, hybrid-2, hybrid-3, and hybrid-4 ensembles are summarized in table 10. 

Table 10. Performance of Hybrid Models with Soft Voting Ensemble 

No Models Weight Quantity Accuracy Precision Recall F1 Score 

1 LR [1.00] 1 85.78 85.74 85.73 85.73 

2 RF [1.00] 1 91.72 91.73 91.64 91.68 

3 SVM [1.00] 1 87.61 87.57 87.56 87.56 

4 XGBoost [1.00] 1 91.82 91.84 91.74 91.74 

5 LR, RF [0.48328, 0.51672] 2 89.77 90.10 90.62 90.36 

6 LR, SVM [0.49474, 0.50526] 2 86.87 87.62 87.57 87.59 

7 LR, XGBoost [0.48301, 0.51699] 2 90.68 90.92 91.53 91.22 

8 RF, SVM [0.51146, 0.48854] 2 90.16 90.26 91.25 90.75 

9 RF, XGBoost [0.49973, 0.50027] 2 91.95 91.72 93.21 92.46 

10 SVM, XGBoost [0.48827, 0.51173] 2 90.82 90.92 91.83 91.37 

11 LR, RF, SVM [0.32358, 0.34596, 0.33046] 3 88.88 89.13 89.95 89.54 

12 LR, RF, XGBoost [0.31852, 0.34055, 0.34093] 3 91.32 91.29 92.41 91.85 

13 LR, SVM, XGBoost [0.32345, 0.33034, 0.34621] 3 89.56 89.88 90.46 90.17 

14 RF, SVM, XGBoost [0.33826, 0.32311, 0.33863] 3 91.39 91.41 92.41 91.91 

15 
LR, RF, SVM, 

XGBoost 

[0.24034, 0.25696, 0.24545, 

0.25725] 
4 90.48 90.65 91.44 91.04 

The performance results of the hybrid models using the soft voting ensemble are shown in table 10. Compared to 

individual classifiers, the ensemble combinations generally produced higher scores across all metrics, confirming the 

effectiveness of integrating multiple models. Among the hybrid-2 models, the combination of Random Forest and 
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XGBoost achieved the highest performance with an accuracy of 91.95% and an F1-score of 92.46, outperforming both 

models individually. This indicates that the complementary strengths of RF and XGBoost significantly enhanced the 

classification results. For the hybrid-3 models, the best performance was obtained from the RF, SVM, and XGBoost 

combination, yielding an accuracy of 91.39% and an F1-score of 91.91, which was slightly higher than the LR-inclusive 

hybrids. Meanwhile, the full hybrid model combining all four classifiers (LR, RF, SVM, and XGBoost) achieved an 

accuracy of 90.48% and an F1-score of 91.04, which, although strong, did not surpass the simpler RF+XGBoost hybrid. 

These findings suggest that while adding more classifiers does not always guarantee superior performance, selecting 

complementary models with strong individual accuracies such as RF and XGBoost can lead to the most effective hybrid 

ensemble. 

To highlight the impact of data balancing and ensemble techniques, table 11 presents the comparison of the best-

performing models across the three experimental stages: baseline, SMOTEENN, and hybrid soft voting ensemble. As 

shown, the baseline model using XGBoost achieved an accuracy of 74.56% and an F1-score of 71.08, which improved 

substantially after applying SMOTEENN, reaching 91.82% accuracy and 91.74 F1-score. The highest performance 

was obtained by the RF+XGBoost hybrid model, which achieved an accuracy of 91.95% and an F1-score of 92.46. 

Table 11. Comparison of Best Models Across different Scenarios 

Scenario Best Model Accuracy Precision Recall F1 Score 

Baseline (Original) XGBoost 74.56 72.27 70.45 71.08 

With SMOTEENN XGBoost 91.82 91.84 91.74 91.74 

Hybrid (SVE) RF + XGBoost 91.95 91.72 93.21 92.46 

These results demonstrate that SMOTEENN was highly effective in addressing class imbalance, while the soft voting 

ensemble further enhanced predictive performance by leveraging the complementary strengths of Random Forest and 

XGBoost. Overall, the proposed hybrid approach outperformed individual classifiers, providing a robust and reliable 

framework for stunting risk prediction. To further validate the performance improvements, a paired t-test was 

conducted across cross-validation folds comparing the baseline model and the hybrid SVE. The results revealed that 

the hybrid ensemble achieved significantly higher accuracy, precision, recall, and F1-score than the baseline model (t 

= –17.32, p < 0.05), confirming the robustness of the observed gains. 

4.5. SHAP for Interpretability Model 

The SHAP summary plot visualizes the relative importance and impact of features on model predictions can be 

visualized in figure 5. 

  
Figure 5. SHAP Summary Plot of Feature Contributions to Stunting Risk Prediction 
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Figure 5 presents the SHAP summary plot, which combines global and local interpretability of the model. The left 

panel shows the mean absolute SHAP values for each feature, ranking them by overall importance in predicting stunting 

risk, while the right panel illustrates the distribution of SHAP values for individual households. The results demonstrate 

that Family Members (+1.69), Education Level (+0.96), and Diverse Food Consumption (+0.57) are the most 

influential predictors, followed by Occupation (+0.53) and Drinking Water Source (+0.47). Larger family size and 

lower maternal education exert strong positive contributions, pushing predictions toward higher stunting risk. Likewise, 

lack of dietary diversity and high-risk occupations such as farming also increase risk. 

The beeswarm distribution in the right panel provides additional nuance by showing how variations in feature values 

affect the prediction direction. For example, higher values of family size (red) are consistently associated with positive 

SHAP values, indicating elevated risk, while smaller family sizes (blue) push predictions toward lower risk. Similarly, 

lower education levels and absence of dietary diversity are clustered on the positive side, reinforcing their role as strong 

drivers of risk. Conversely, features such as House Condition, Drinking Water Source, and Toilet Sanitation appear on 

the negative side of the distribution when they are adequate or safe, highlighting their protective influence in reducing 

stunting risk. Taken together, the summary plot underscores that socio-demographic (family size, education), 

nutritional (dietary diversity), and environmental (housing and sanitation) factors collectively shape household stunting 

risk. Beyond validating known determinants, the SHAP results quantify their relative importance and reveal interaction 

effects, providing a transparent foundation for prioritizing interventions in stunting reduction programs. 

While the SHAP summary plot provides a global perspective of the most influential features across the dataset, the 

SHAP force plot offers local interpretability by explaining predictions for individual households. This visualization 

decomposes a single prediction into the baseline value and the contributions of each feature, allowing us to see precisely 

which factors increase or decrease the risk classification. Figure 6 presents SHAP force plots for two households, 

illustrating how the model decomposes an individual prediction into contributions from each feature. 

 

(a) 

 

 

(b) 

 

 

Figure 6. SHAP Force Plot: (A) Sample #10 Classified As At Risk, (B) Sample #100 Classified as Not at Risk 

The base value (0.1225) represents the average model output, expressed in log-odds, before accounting for household-

specific characteristics. Each arrow indicates the direction and magnitude of a feature’s influence, with red arrows 

pushing the prediction toward higher risk and blue arrows pulling it toward lower risk. The length of the arrow 

corresponds to the relative strength of the feature’s impact. 

For sample #10 (figure 6a), the model output reached f(x) = 1.93 (log-odds), which after logistic transformation 

corresponds to a high predicted probability of being at risk. This upward shift was primarily driven by absence of health 

The base value or baseline prediction of 

the model before considering any features. 

The actual value of each characteristic for the particular 

case being explained is shown next to the variable name. 

In a force graph, characteristics that have a positive 

impact are shown in pink, and those that have a negative 

impact are shown in blue. Variables larger SHAP values 

(i.e., more impact) have larger arrows. 
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insurance (type 4), farmer occupation, poor dietary diversity, and relatively small family size. Although protective 

factors such as safe drinking water and adequate toilet sanitation exerted negative contributions, their effect was 

insufficient to counterbalance the stronger positive drivers, leading to a classification of “at risk.” 

In contrast, sample #100 (figure 6b) produced a model output of f(x) = –1.18 (log-odds), corresponding to a low 

probability of stunting risk. Here, protective features such as access to safe drinking water, adequate housing condition, 

clean cooking fuel, and asset ownership exerted dominant downward effects. While risk-enhancing factors like farmer 

occupation and poor dietary diversity were present, their contributions were outweighed by stronger protective 

influences, resulting in the classification of “not at risk.” 

These household-level explanations underscore SHAP’s utility in providing local interpretability. Beyond identifying 

which households are classified as at risk, the method reveals the precise factors driving each decision. Such insights 

are valuable for policymakers and practitioners, as they enable the design of targeted interventions—for example, 

improving dietary diversity or ensuring access to clean water—that directly address the drivers of vulnerability in 

specific households. 

5. Conclusion 

This study introduced a hybrid machine learning framework for stunting risk prediction that integrates SMOTEENN 

for addressing class imbalance, soft voting ensemble for robust classification, and SHAP for model interpretability. 

The findings confirmed that class imbalance severely constrained baseline model performance, with the best standalone 

model (XGBoost) achieving only 74.56% accuracy and 71.08% F1-score, underscoring the challenge of detecting 

minority-class households. By applying SMOTEENN, predictive performance improved substantially across all 

models, with XGBoost reaching 91.82% accuracy and 91.74% F1-score, demonstrating the critical role of resampling 

in imbalanced health datasets. 

Further enhancement was achieved through the soft voting ensemble strategy, where the hybrid of Random Forest and 

XGBoost yielded the highest performance (91.95% accuracy and 92.46% F1-score). This result highlights the value of 

combining complementary learners to improve both accuracy and sensitivity. Beyond predictive strength, SHAP 

analysis provided interpretability by identifying family size, maternal education, food diversity, occupation, and 

housing conditions as the most influential predictors, ensuring that the model’s decisions remain transparent and 

actionable. 

Taken together, the proposed hybrid framework demonstrates both technical robustness and practical relevance. While 

the results suggest strong potential for policy applications, actual deployment would require integration with existing 

health information systems, consideration of data privacy and ethical safeguards, and alignment with community-based 

intervention strategies. With these considerations addressed, the framework could serve as a decision-support tool to 

facilitate early detection of at-risk households, guide resource allocation, and support evidence-based programs to 

reduce stunting prevalence and improve child health outcomes in vulnerable populations. 
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