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Abstract 

This study proposes an intelligent Machine Learning (ML)-based smart controller for industrial flow process systems to enhance accuracy, 

adaptability, and robustness compared to conventional Proportional–Integral–Derivative (PID) controllers. The main idea is to replace reactive 

PID tuning with a proactive data-driven control strategy capable of predicting deviations and adjusting process parameters in real time. The 

objective is to develop and evaluate supervised learning models that can replicate and improve PID performance using real-time operational data 

collected from a flow process station. The proposed system integrates Internet of Things (IoT) sensors and edge computing to continuously 

acquire and process flow rate, pressure, and valve position data for model training and testing within the WEKA platform. Four classifiers—

Linear Regression, Multilayer Perceptron (MLP), Sequential Minimal Optimization Regression (SMOreg), and M5P model tree—were compared 

using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), and model-building time as key evaluation 

metrics. Experimental results demonstrated that the M5P pruned tree model achieved the best overall performance with an MSE of 0.0024, RMSE 

of 0.0577, and model-building time of only 0.03 seconds, outperforming Linear Regression (RMSE = 0.0028), MLP (RMSE = 0.026), and 

SMOreg (RMSE = 0.0279). The findings show that the M5P-based controller closely replicates PID behavior while offering superior predictive 

accuracy, faster computation, and self-adaptive learning capabilities. The novelty of this research lies in demonstrating that an IoT-enabled, data-

driven smart controller can achieve real-time predictive control without requiring explicit mathematical models, thereby simplifying tuning 

complexities and paving the way for autonomous, scalable, and intelligent control systems in Industry 4.0 environments. 
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1. Introduction 

Industrial process control systems are essential for achieving precision, reliability, and operational efficiency across 

manufacturing, energy, and chemical industries. Traditionally, these systems rely on Proportional–Integral–Derivative 

(PID) controllers, which remain among the most widely used control strategies because of their simplicity and stability 

under linear and time-invariant conditions [1]. However, PID controllers are reactive in nature, responding to deviations 

only after they occur. Their effectiveness depends heavily on precise mathematical modeling and manual parameter 

tuning, which can be complex, time-consuming, and error-prone when dealing with nonlinear, time-varying, or 

multivariable systems [2], [3]. 

With the emergence of Industry 4.0, industrial automation has undergone a paradigm shift toward intelligent, adaptive, 

and data-driven control frameworks. The integration of the Internet of Things (IoT) into control architectures enables 

the continuous acquisition of real-time data from distributed sensors and actuators, allowing systems to monitor process 

variables dynamically and make informed control decisions [4]. When combined with Machine Learning (ML), IoT 

facilitates predictive and autonomous control mechanisms that can identify temporal patterns, forecast process 
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deviations, and optimize control actions before errors occur [5], [6]. This evolution from reactive to predictive control 

signifies a major advancement in process optimization and operational efficiency in modern industrial systems. Despite 

these developments, challenges remain in implementing intelligent control systems that are both computationally 

efficient and adaptable to diverse process conditions. Many previous studies have focused on model-based control or 

reinforcement learning approaches, which, although effective, often require extensive domain-specific modeling and 

significant computational resources, making them less practical for real-time applications [7], [8]. Furthermore, most 

existing ML-based controllers have limited integration with IoT frameworks, restricting their ability to leverage 

distributed sensor networks for adaptive decision-making and continuous learning [9]. 

In response to these limitations, the present study proposes an IoT-enabled supervised learning-based smart controller 

designed to replace the conventional PID controller in industrial flow process systems. The proposed system employs 

machine learning techniques to predict control actions proactively, thereby enhancing adaptability and accuracy 

without the need for explicit mathematical modeling. The development and implementation of the intelligent controller 

are carried out using the Weka platform, an open-source software environment that offers a wide range of data mining 

and machine learning algorithms. Weka, developed at the University of Waikato, New Zealand, has been successfully 

utilized in multiple domains such as cybersecurity for anomaly detection [10], predictive maintenance for early fault 

identification [11], and agriculture for crop yield prediction based on environmental and soil data [12]. Its capacity for 

data preprocessing, classification, regression, and model validation makes it a suitable tool for building intelligent 

control systems. 

In this research, supervised learning algorithms including Linear Regression, Multilayer Perceptron, SMOreg 

(Sequential Minimal Optimization for Regression), and M5P model tree are trained and evaluated using real-time data 

from a conventional PID-controlled flow process. The comparative performance of these models is assessed based on 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and model-building time to identify the most effective 

predictive model for implementation [13]. The integration of IoT-enabled data acquisition and supervised learning not 

only enhances control precision but also facilitates remote monitoring, predictive maintenance, and system scalability. 

This work aims to demonstrate that an IoT-enabled, machine learning-based controller can replicate and surpass the 

performance of traditional PID systems by offering predictive control capabilities, reduced tuning complexity, and 

higher adaptability in dynamic environments. The study contributes to the advancement of intelligent instrumentation 

and control systems, aligning with the broader objectives of Industry 4.0 to achieve autonomous, data-driven industrial 

operations. 

2. Literature Review 

Research on intelligent control and machine learning in industrial systems has evolved toward more autonomous, 

adaptive, and data-driven approaches. Numerous studies have investigated the integration of the IoT, artificial 

intelligence, and advanced control algorithms to enhance system performance, predictive accuracy, and adaptability in 

dynamic environments. 

Several investigations have demonstrated the effectiveness of data-driven control frameworks in improving automation 

and decision-making. Deep learning-based models have been employed to manage smart networks and optimize 

encrypted traffic flow in distributed environments [4]. Reinforcement learning approaches have been used for nonlinear 

system control through Q-Learning and Markov Decision Process algorithms, enabling controllers to learn from 

environmental feedback and improve long-term performance [5], [6]. Other studies have implemented supervised and 

ensemble learning methods such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 

Extreme Learning Machines (ELM) for predictive control and anomaly detection [7], [8], [9]. These approaches 

consistently indicate that machine learning, particularly supervised and hybrid models, provides high prediction 

accuracy and stability in complex, time-varying systems. 

While reinforcement learning methods [5], [6] focus on self-adaptation and long-term optimization, they require large 

datasets and high computational resources, limiting real-time deployment in industrial settings. In contrast, supervised 

and ensemble learning models [7], [8], [9] are faster to train and implement but often lack online adaptability once 

deployed. Fuzzy-based approaches have been applied to energy management systems, combining fuzzy inference with 
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heuristic optimization such as the BAT algorithm to minimize energy consumption and cost [10]. However, these 

models rely heavily on rule-based structures and expert-defined parameters, which may limit scalability. 

In wireless sensor networks, regression-based models such as M5P and SMOreg have demonstrated strong localization 

accuracy and computational efficiency [11]. Yet, they perform best under static conditions and may degrade in 

performance under non-stationary or noisy environments. Neural network-based models have been applied to IoT 

security systems using predictive temperature analysis to detect abnormal patterns [12], achieving high detection 

accuracy but facing challenges in interpretability and model transparency. Fractional-order control models have also 

been explored to enhance the dynamic response of industrial processes, showing improvements in rise time and settling 

time but introducing increased tuning complexity [1]. 

Despite substantial progress, several limitations persist in existing research. Reinforcement learning and deep neural 

network approaches often exhibit high model complexity and long training times, making them less suitable for low-

latency, resource-constrained IoT environments [5], [8], [7]. Supervised and regression-based methods [7], [8], [9], 

though computationally efficient, are typically static and unable to adapt autonomously to new system states without 

retraining. Fuzzy systems and heuristic controllers [10] lack generalization when exposed to large-scale, heterogeneous 

data streams. Fractional-order and hybrid control models [1] provide enhanced responsiveness but require sophisticated 

tuning algorithms and are not easily implemented in embedded architectures. 

Broader reviews on machine learning in manufacturing and industrial automation have also identified significant 

barriers to the practical deployment of intelligent controllers, including data heterogeneity, communication latency, 

and the absence of unified IoT standards [13], [14]. These reviews highlight that while predictive maintenance, anomaly 

detection, and process optimization are well-studied, few frameworks have successfully integrated IoT-based real-time 

sensing with adaptive machine learning control under industrial constraints. 

Across the literature, there is a clear progression toward integrating IoT, machine learning, and intelligent control to 

achieve predictive and adaptive process management. Reinforcement and deep learning techniques provide adaptability 

but demand substantial computational power [5], [6], [7], while supervised and ensemble models offer precision and 

stability suitable for real-time industrial applications [7], [8], [9]. Fuzzy and heuristic optimization frameworks 

contribute interpretability and robustness in energy management [10], whereas regression-based and neural models 

enhance reliability in wireless networks and IoT security [11], [12]. Fractional-order controllers expand the control 

domain by improving transient response and robustness [1]. 

Synthesizing these insights reveals that an effective intelligent control system must balance accuracy, adaptability, and 

computational efficiency. The convergence of IoT-enabled data acquisition with supervised learning algorithms offers 

a viable pathway toward real-time, predictive, and autonomous control. Building upon this synthesis, the present study 

proposes an IoT-enabled supervised learning-based prediction model for smart instrumentation controllers in signal 

conditioning systems. This model leverages the predictive power of machine learning, the connectivity of IoT, and the 

adaptability of intelligent control to optimize process performance and reliability in dynamic industrial environments. 

3. Methodology 

3.1. System Configuration 

The proposed smart controller was developed to replace the conventional Proportional–Integral–Derivative (PID) 

controller within a closed-loop flow control system [15], [16]. The structure of the control loop consists of a Setpoint 

Reference (SP), a summing junction, the proposed smart controller, a Final Control Element (FCE), a flow process 

station, and a measuring device. The instantaneous control error is defined as 

𝑒(𝑡) = 𝑆𝑃 − 𝑦(𝑡) (1) 

e(t)represents the deviation between the setpoint (SP) and the measured process output (y(t)). The proposed controller 

generates a control signal u(t), which is sent to the FCE that manipulates the process input. The overall system 

dynamics can be expressed as 

𝑦(𝑡) = 𝐺𝑝(𝑠) ⋅ 𝑢(𝑡) + 𝑑(𝑡) (2) 
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Gp(s)denotes the process transfer function and d(t)represents external disturbances affecting system stability. 

The feedback mechanism ensures that any deviation from the desired setpoint is minimized in real time [17], [18]. The 

proposed configuration introduces an intelligent data-driven control model that learns optimal control actions from 

process behavior rather than relying on explicit analytical models. Figure 1 shows the closed-loop structure of the smart 

flow control system, consisting of the proposed intelligent controller, the final control element, the flow process station, 

and the feedback sensor loop. 

 

Figure 1. Proposed Block Diagram with Flow Controller 

3.2. Data Acquisition and Preprocessing 

The experiment was conducted on a real-time flow process station operating under a conventional PID controller. The 

setpoint was maintained at 250 LPH, corresponding to a transmitter output of 2.5 V and approximately 30% valve 

opening. At steady state, 1,332 instances of flow, voltage, and control valve positions were recorded as training data 

for the machine learning algorithms. The parameters measured include time (t), process variable in liters per hour 

(PVLPH), transmitter voltage (PVV), control percentage (CP1), and error (E). These parameters form the input–output 

dataset represented as [19]. 

𝑋 = [𝑡, 𝑃𝑉𝐿𝑃𝐻 , 𝑃𝑉𝑉, 𝐶𝑃1, 𝐸] 
𝑌 = [𝑢(𝑡)] 

(3) 

𝑋represents the input features and 𝑌denotes the target output variable. Table 1 presents a subset of the real-time data 

collected from the PID-controlled system. 

Table 1. Real-time data of the flow process station 

Time (s) PV (LPH) PV (Volts) CP1 (%) Error (%) 

49.27 103.91 1.04 88.01 29.22 

49.41 115.26 1.15 86.03 26.95 

155.20 256.65 2.57 31.67 -1.33 

191.03 254.46 2.54 30.81 -0.89 

213.22 253.36 2.53 30.43 -0.67 
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213.63 252.99 2.53 30.47 -0.60 

This dataset forms the foundation for the supervised learning framework that drives the proposed smart controller. 

3.3. Mathematical Modeling of the Conventional PID Controller 

For comparison purposes, the conventional PID controller is described by the following expression: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

 (4) 

Kp, Ki, and Kdare the proportional, integral, and derivative gains, respectively. These parameters determine the 

response characteristics of the controller, including rise time, settling time, and steady-state error. Although PID 

controllers are reliable, they rely heavily on manual tuning and perform poorly in nonlinear systems [20]. This 

limitation motivates the adoption of a machine learning–based model that can approximate nonlinearities adaptively 

without requiring manual gain adjustment. 

3.4. Supervised Learning Framework 

The proposed controller employs a supervised learning approach in which the model learns from pre-recorded input–

output data pairs. The objective of the learning algorithm is to find a function fθ(X)that maps inputs X to outputs Y by 

MSE between predicted and actual outputs. The optimization objective is expressed as 

𝐽(𝜃) =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 (5) 

n is the total number of data samples, Yi is the actual output, Ŷi is the model’s prediction, and θrepresents the set of 

trainable parameters. The learning process involves dataset partitioning into training and testing subsets [21]. The 

model undergoes multiple epochs of training, where its parameters are iteratively updated to minimize the cost function. 

The trained model is then validated on unseen data to assess generalization capability. Model evaluation is performed 

using three statistical metrics: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑌𝑖 − 𝑌̂𝑖 ∣

𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2𝑛

𝑖=1

 

(6) 

RMSErepresents the root mean squared error, MAEthe mean absolute error, and R2the coefficient of determination. 

Figure 2 represents the conceptual workflow of the supervised learning process, illustrating data training, evaluation, 

model tuning, and deployment stages. 
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Figure 2. Supervised Learning Flow Block Diagram 

3.5. Learning Algorithms 

Four supervised learning models were tested and compared. The first model, linear regression, assumes a linear 

relationship between inputs and outputs as represented by 

𝑌̂ = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑚

𝑗=1

 (7) 

β0 is the intercept and βj represents regression coefficients. The second model, the MLP, uses a nonlinear mapping 

function given by 

𝑌̂ = 𝑓(𝑊2 ⋅ 𝜎(𝑊1𝑋 + 𝑏1) + 𝑏2) (8) 

W1 and W2are weight matrices, b1and b2are bias terms, and σ(⋅)is an activation function. The third model, (Sequential 

Minimal Optimization for Regression (SMOreg), solves the regression version of the support vector machine using 

quadratic optimization: 

min 
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶 
(9) 

Q is the kernel matrix and C is the regularization constant. The fourth model, M5P model tree, constructs a decision 

tree where each leaf node fits a linear regression function: 

𝑌̂𝑖 = 𝛽0𝑖 + ∑ 𝛽𝑗𝑖𝑋𝑗

𝑚

𝑗=1

 (10) 

This approach combines the interpretability of decision trees with the precision of regression models, providing a 

balance between accuracy and computational efficiency. 

3.6. Implementation Characteristics 

Real-time implementation of the smart controller requires continuous sensor feedback and stable communication 

between IoT-enabled field devices and the central control algorithm. Sensor reliability is essential, as missing or 

corrupted data can disrupt prediction accuracy [22], [23]. When a fault is detected, the system temporarily restricts 

autonomous adjustments and alerts the operator for manual oversight. The adaptive control action generated by the 

machine learning model can be expressed as 

𝑢(𝑡) = 𝑓𝜃(𝑥𝑡) = arg min 
𝜃

𝔼[(𝑌𝑡 − 𝑌̂𝑡)2] (11) 
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This formulation ensures that the model continuously refines its predictions using real-time data, allowing the controller 

to self-optimize under changing process conditions. Compared to conventional PID control, which depends on static 

parameters Kp, Ki, and Kd, the proposed approach dynamically updates its internal parameters to maintain optimal 

control accuracy. Consequently, the controller exhibits predictive, adaptive, and self-tuning behavior suitable for 

nonlinear and time-varying industrial environments. 

The methodology integrates experimental data collection, supervised learning model development, and mathematical 

control theory into a unified framework. By combining real-time IoT data acquisition with adaptive learning 

algorithms, the proposed smart controller achieves predictive and robust control performance. The mathematical 

formulations presented here establish a quantitative foundation for evaluating the system’s behavior relative to 

traditional PID control approaches. 

4. Results and Discussion 

The dataset used in this study was collected from a conventional flow process station after the system reached a steady-

state condition to ensure that the acquired data accurately represented stable operating behavior. The recorded data 

consisted of five primary attributes—time, process variable (flow rate in liters per hour), transmitter output voltage, 

control valve opening percentage, and percentage error. This dataset, comprising 1,332 instances, served as the 

foundation for training and testing the machine learning models used in developing the proposed intelligent controller. 

The entire data analysis and model development process were conducted using the Waikato Environment for 

Knowledge Analysis (WEKA) software tool. WEKA is an open-source platform developed at the University of 

Waikato, New Zealand, designed to perform machine learning and data mining tasks, including data preprocessing, 

regression, classification, clustering, and visualization. In this study, WEKA was used primarily for supervised learning 

model training, validation, and optimization to identify the most accurate and computationally efficient model suitable 

for real-time control implementation. 

4.1. Workflow of Model Development 

The development workflow for obtaining the optimum model involved several stages, beginning with data collection, 

preprocessing, model training, and performance validation. The flowchart presented in figure 3 illustrates the 

systematic process used to build and evaluate models within the WEKA environment. 

The process starts with data collection from the flow process station, which is followed by preprocessing to remove 

noise and normalize the dataset. The cleaned data is then used to train multiple classifiers, including Linear Regression, 

Multilayer Perceptron, SMOreg, and M5P. Each classifier undergoes parameter tuning by varying learning rate, batch 

size, and kernel size until an optimal configuration is achieved. Model performance is continuously evaluated using 

RMSE and RAE as validation criteria. Once a model achieves the lowest RMSE and RAE values, it is identified as the 

optimum model and selected for deployment as the core of the smart controller. 



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2959-2973 

ISSN 2723-6471 

2966 

 

 

 

 

Figure 3. Experimental flowchart for model optimization using WEKA 

4.2. Model Training and Validation 

The dataset, in comma-separated format, was loaded into WEKA to perform numerical value training using the four 

selected classifiers. Each algorithm was trained and validated using a 10-fold cross-validation method to ensure that 

the models generalized well to unseen data. This method divides the dataset into ten equal partitions; nine are used for 

training, and one is used for testing, repeating the process ten times so that each portion is used for testing once. 

During model configuration, specific hyperparameters were adjusted to improve performance. In the Multilayer 

Perceptron model, the learning rate was increased from its default value of 0.3 to 0.5 to accelerate convergence. For 

the SMOreg model, 347,978 kernel evaluations were executed with approximately 75% caching to balance speed and 

accuracy. The M5P algorithm, which constructs decision trees with linear regression functions at each terminal node, 

was implemented in its pruned form to prevent overfitting. The performance of each classifier was assessed based on 

three key indicators: RMSE, RAE, and model-building time. The results are summarized in table 2. 

Table 2. Experimental Results of the Developed Model 

Category Classifier RMSE Relative Absolute Error (%) Time to Build Model (s) 

Functions Linear Regression 0.0028 0.0584 0.01 

Functions Multilayer Perceptron 0.026 0.6186 0.28 

Functions SMOreg 0.0279 0.6642 0.13 

Trees M5P 0.0024 0.0577 0.03 

The Linear Regression and M5P classifiers achieved the lowest RMSE and RAE values, indicating higher prediction 

accuracy. The M5P model showed slightly better precision than Linear Regression while maintaining a short training 

time. In contrast, the Multilayer Perceptron and SMOreg classifiers required more time to build their models and 

produced higher error rates, making them less suitable for real-time control applications. 

4.3. Model Building Time Analysis 

The relationship between the four classifiers and the time required to build their respective models is presented in figure 

4. The graph clearly shows significant variation in computational efficiency among the selected algorithms. Each 

classifier exhibits distinct model-building behavior based on its internal learning structure, computational complexity, 

and optimization mechanism. 
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Figure 4. Classifier versus time taken to build the model 

The Linear Regression model demonstrates the shortest training duration, with an approximate model-building time of 

only 0.01 seconds. This efficiency results from its relatively simple mathematical formulation, which relies on a closed-

form analytical solution to minimize the error function. Since it involves no iterative optimization or backpropagation, 

Linear Regression provides an almost instantaneous computation time, making it highly suitable for real-time industrial 

control applications where rapid model deployment is essential. 

In contrast, the MLP exhibits the longest model-building time, approximately 0.28 seconds. This substantial increase 

is primarily attributed to its multi-layered neural network architecture, which requires iterative weight adjustment 

through backpropagation and gradient descent across multiple epochs. The higher number of parameters and nonlinear 

activation functions substantially increase the computational load, especially during convergence toward the optimal 

error minimum. While this structure enables the MLP to capture complex nonlinear relationships, it also imposes a 

higher computational cost, making it less efficient for applications demanding low-latency control responses. 

The SMOreg algorithm demonstrates intermediate performance, with a model-building time of around 0.13 seconds. 

This value reflects the algorithm’s dependence on kernel-based optimization, which balances between accuracy and 

computational demand. Although SMOreg performs well in capturing nonlinear dependencies, the iterative process of 

solving multiple quadratic subproblems and evaluating kernel matrices contributes to its moderate training time. 

Despite being faster than MLP, its time complexity still limits its use in scenarios requiring continuous retraining or 

adaptive online control. 

The M5P model tree combines the interpretability of regression analysis with the hierarchical structure of decision 

trees, resulting in a compact and efficient training process. With a total model-building time of approximately 0.03 

seconds, it ranks as one of the most computationally efficient algorithms tested. Its efficiency arises from its two-phase 

approach: partitioning the data space using decision tree logic, followed by fitting local linear regression models within 

each leaf node. This hybrid mechanism allows the M5P to achieve both computational speed and predictive precision, 

making it particularly advantageous for adaptive real-time flow control systems. 

Overall, the graph reveals a clear descending order of computational efficiency: Multilayer Perceptron (slowest), 

SMOreg (moderate), M5P (fast), and Linear Regression (fastest). The steep slope observed between the Multilayer 

Perceptron and M5P indicates a substantial computational gap between deep neural networks and tree-based regression 

techniques. This distinction highlights the practical importance of selecting models that balance accuracy with 

computational feasibility, particularly in industrial automation and IoT-based process control environments where real-

time responsiveness is critical. 

4.4. Error Distribution and Prediction Accuracy 

The evaluation of prediction accuracy among the selected classifiers was conducted using RMSE as a key performance 

metric. RMSE quantifies the magnitude of the difference between the predicted output and the actual process value, 

making it a reliable indicator of how closely a model replicates the true system behavior. A lower RMSE value 

corresponds to higher predictive accuracy and a more stable learning model. 
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The comparison of RMSE values across the four classifiers is illustrated in figure 5, which presents a clear visual 

differentiation in error distribution among the algorithms. The figure displays an ascending and descending trend 

forming a parabolic shape, where error values initially rise sharply from Linear Regression to SMOreg before declining 

again at M5P. This pattern reveals that the level of model complexity does not necessarily correlate with higher 

predictive performance, especially in small to moderately sized industrial datasets. 

 

Figure 5. Classifiers versus Root Mean Square Error (RMSE) 

The M5P model tree achieved the lowest RMSE value of 0.0024, confirming its superior predictive precision. This 

result highlights the model’s hybrid strength—combining decision tree segmentation with localized linear regression 

at each leaf node. This structural approach allows the M5P model to effectively capture both linear and piecewise-

linear patterns within the flow process data, yielding smooth and accurate predictions across all operating regions. 

The Linear Regression model follows closely with an RMSE of 0.0028, demonstrating that for systems exhibiting 

predominantly linear or near-linear dynamics, traditional regression methods remain highly effective. Its minimal 

deviation from the M5P model indicates that the flow process under investigation behaves in a mostly linear manner, 

where simple regression models can approximate control responses with remarkable accuracy. Both models maintained 

stability and consistency during testing, with no significant outliers or fluctuations in prediction error. 

In contrast, the MLP and SMOreg models produced noticeably higher RMSE values of 0.026 and 0.0279, respectively. 

The elevated error levels in these models stem from their nonlinear learning architectures, which, while theoretically 

capable of modeling complex system behaviors, require substantially larger datasets and longer training times to 

achieve equivalent accuracy. In the current experimental setup—characterized by a moderate number of training 

samples and quasi-linear process dynamics—these models exhibited slight overfitting tendencies and slower 

convergence, leading to higher residual errors. 

The graphical pattern in figure 5 reinforces the conclusion that simpler models, such as Linear Regression and M5P, 

outperform more complex nonlinear approaches under conditions where the underlying process dynamics are primarily 

linear or weakly nonlinear. Their reduced computational overhead and robust generalization make them highly practical 

for real-time flow control environments, where low-latency response and consistent accuracy are paramount. 

Moreover, the sharp contrast between the peak error values of the Multilayer Perceptron and SMOreg models and the 

minimal errors of the M5P and Linear Regression models emphasizes the importance of model-to-process compatibility 

in data-driven control system design. The ability of the M5P model to combine interpretability, speed, and accuracy 

positions it as the optimal choice for embedding within an intelligent control framework that must adapt continuously 

to variations in process conditions. 

4.5. Comprehensive Model Performance Analysis 

A holistic evaluation of the classifiers’ performance was conducted by comparing three critical indicators: RMSE, 

RAE, and the total time required to build each model. The combined results are illustrated in figure 6, which provides 

a clear comparative view of each algorithm’s predictive accuracy, computational efficiency, and structural complexity. 
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The figure shows that the Linear Regression and M5P pruned tree models achieved the most favorable balance between 

accuracy and computational speed. Both models recorded extremely low RMSE and RAE values, accompanied by 

minimal model-building time. The Linear Regression model demonstrates a near-instantaneous computation time, 

emphasizing its suitability for real-time industrial applications where rapid retraining or adaptive response is essential. 

The M5P pruned tree, although slightly slower than Linear Regression, exhibits marginally lower prediction error, 

proving its ability to model subtle nonlinearities that may exist in the process data. 

 

Figure 6. Performance analysis of the optimum model 

The MLP model, on the other hand, shows a distinctly different behavior. As seen in the figure, the MLP exhibits the 

highest RAE percentage—approximately 0.62—and a significantly longer training time compared to the other 

classifiers. This increase in both error magnitude and computational time is attributed to the model’s multilayer 

architecture, which relies on iterative weight updates through backpropagation. While this deep structure enables the 

MLP to approximate complex nonlinear functions, it also introduces high computational cost and sensitivity to 

hyperparameter selection, such as learning rate and number of hidden neurons. In environments where control decisions 

must be made within milliseconds, such overhead can be impractical. 

The SMOreg classifier follows a similar trend to the Multilayer Perceptron, with a slightly higher RAE value of 

approximately 0.66 and a moderate model-building time. The SMOreg algorithm, based on support vector regression, 

utilizes kernel functions to map data into higher-dimensional spaces. Although this enhances its ability to capture 

nonlinear relationships, it also significantly increases computational complexity, especially during kernel evaluation 

and optimization stages. The model’s relatively high RMSE and prolonged computation time make it less favorable 

for implementation in time-sensitive control systems, despite its robustness in handling noisy data. 

In contrast, the M5P pruned tree model demonstrates an optimal compromise between simplicity, accuracy, and 

computational efficiency. Its structure, which combines decision tree partitioning with linear regression at the terminal 

nodes, allows it to deliver precise predictions while avoiding the overfitting problems often associated with purely 

nonlinear models. The M5P model’s low RMSE and RAE values indicate that it consistently generates accurate 

predictions with minimal residual error, while its shorter training time highlights its computational practicality. This 

makes it particularly well-suited for real-time intelligent control systems that require both fast response and high 

reliability. 

The comparative behavior seen in figure 6 therefore establishes two distinct performance clusters. The first cluster, 

consisting of Linear Regression and M5P, demonstrates low error values and short computation times, representing 

models that are ideal for online or embedded implementations. The second cluster, comprising Multilayer Perceptron 

and SMOreg, displays higher error rates and longer training durations, making them more suitable for offline learning 

scenarios or systems with ample computational resources. 

From an implementation standpoint, the findings highlight the importance of aligning model complexity with system 

requirements. For industrial IoT-based flow control systems, where controllers must adapt dynamically with minimal 
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delay, the Linear Regression and M5P models are the most suitable. Their low RMSE and RAE ensure accurate 

predictive control, while their fast model-building time facilitates rapid retraining when new data is introduced. 

Conversely, while the Multilayer Perceptron and SMOreg algorithms offer flexibility in modeling nonlinear processes, 

their slower computation speeds and higher error margins make them less effective for real-time deployment. 

In conclusion, the comparative performance analysis underscores the M5P pruned tree as the optimum classifier for 

the proposed smart controller. It achieves the best compromise between precision, adaptability, and computational 

efficiency. Its hybrid architecture effectively captures both linear and segmented process dynamics, ensuring that the 

smart controller can operate reliably under varying flow conditions with minimal deviation and high responsiveness. 

4.6. Discussion 

The results obtained from the comparative analysis of the four classifiers reveal a distinct clustering pattern in terms 

of both prediction accuracy and computational performance [20]. The MLP and SMOreg models form one group 

characterized by relatively higher error magnitudes and longer training durations. Both algorithms exhibit similar 

prediction behavior, with closely aligned RMSE and RAE values, suggesting that their nonlinear architectures respond 

in comparable ways to the given dataset. This similarity is attributed to their shared reliance on iterative optimization 

and nonlinear kernel transformations, which—while powerful in modeling complex relationships—require extensive 

data and computation to reach their full predictive potential. Under the conditions of this study, where the process data 

is predominantly quasi-linear, such complexity does not necessarily translate into superior accuracy [21]. 

In contrast, the Linear Regression and M5P models consistently outperformed the other classifiers, forming a second 

group that combines precision with computational efficiency. Both models achieved low RMSE and RAE values while 

maintaining extremely short model-building times, indicating their suitability for real-time implementation [22]. The 

M5P model, in particular, emerged as the most effective classifier. Its hybrid design, which integrates decision-tree 

segmentation with local linear regression at each terminal node, enables it to partition the input space adaptively and 

model localized variations within the process data. This capability allows the M5P model to capture complex process 

dynamics that would otherwise be difficult to represent using purely linear approaches, while still retaining the 

interpretability and simplicity characteristic of regression models. 

A key strength of the M5P algorithm lies in its ability to generalize effectively without overfitting. By pruning the 

decision tree during training, the model avoids unnecessary branching and maintains smooth transitions between data 

regions. This structural regularization ensures that the model remains stable and computationally lightweight, which is 

essential for integration into embedded industrial controllers [23]. The model’s consistent predictive accuracy across 

multiple cross-validation trials further confirms its robustness and reliability for dynamic process environments. 

The Linear Regression model, though simpler in structure, also demonstrated commendable predictive accuracy. Its 

performance closely matched that of the M5P model, indicating that the flow process exhibits primarily linear 

relationships between input and output variables under steady-state conditions. This result underscores an important 

insight: for many practical control systems, particularly those with linear or weakly nonlinear behavior, simpler models 

can deliver equivalent or even superior results compared to more complex architectures [24]. 

From a control systems perspective, the performance of the M5P-based intelligent controller mirrors that of a 

conventional PID controller. Both approaches effectively minimize steady-state error and maintain smooth dynamic 

responses. However, the intelligent controller offers a distinct advantage—it does not require manual tuning of 

proportional, integral, and derivative gains. Instead, it continuously adapts its predictive mapping based on data patterns 

learned from the process itself. This self-learning capability enables faster adaptation to process disturbances, 

nonlinearity, or parameter drift, which are common challenges in real-world flow control systems [20]. 

Furthermore, the comparative evaluation validates that machine learning–based predictive control can achieve an 

equivalent level of precision as traditional control methods, while significantly improving flexibility and scalability. 

The M5P and Linear Regression models’ ability to provide near-instantaneous prediction updates makes them ideal for 

modern IoT-enabled control architectures, where real-time decision-making and continuous optimization are required. 

Their compact computational footprint also allows for seamless deployment on embedded hardware such as 

microcontrollers and edge devices [21]. 
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Overall, the findings confirm that the M5P pruned tree model is the optimal solution for the proposed smart flow 

controller. It effectively balances prediction accuracy, model interpretability, and computational efficiency. By 

replicating the dynamic performance of a conventional PID controller while offering superior adaptability to changing 

operating conditions, the M5P-based intelligent controller represents a significant advancement in data-driven process 

automation. This approach demonstrates how supervised learning techniques can be successfully integrated into control 

system design, bridging the gap between classical control theory and modern artificial intelligence [22], [23], [24]. 

5. Conclusion 

The experimental results confirm that the performance of the intelligent flow controller developed in this study closely 

aligns with that of a conventional PID controller in terms of accuracy, stability, and dynamic response. Among the 

evaluated models, the Multilayer Perceptron and SMOreg classifiers exhibited nearly identical error distributions, 

demonstrating consistent predictive trends despite their higher computational complexity. In contrast, the Linear 

Regression and M5P pruned tree models consistently achieved superior performance, with both delivering minimal 

prediction error and rapid computation. This reinforces the validity of implementing supervised learning-based 

approaches for intelligent flow control, where data-driven models can replicate and, in some cases, outperform 

traditional PID control strategies. 

The M5P pruned tree model, in particular, proved to be the most effective among all tested algorithms. Its hybrid 

structure—combining decision-tree segmentation with local linear regression—enables it to capture subtle 

nonlinearities in process behavior while maintaining computational efficiency and interpretability. The findings 

demonstrate that replacing conventional controllers with machine learning–based models can significantly reduce 

tuning complexities, eliminate the need for manual parameter adjustment, and enhance overall system adaptability. 

Beyond performance, the study highlights the broader implications of machine learning (ML)–based flow controllers 

in modern industrial automation. These controllers rely on data-driven modeling, AI frameworks, and in certain 

architectures, cloud or edge computing integration. While more computationally intensive than PID controllers, they 

offer far greater autonomy, predictive intelligence, and adaptability—qualities that are crucial for IoT-enabled smart 

instrumentation systems. By leveraging real-time data for continuous learning and predictive decision-making, ML-

based controllers can enhance signal conditioning efficiency, minimize process disturbances, and improve overall 

system reliability. 

Future research should focus on expanding this work toward cascade process control systems, where slave controllers 

can be replaced or augmented by smart controllers to further reduce tuning and coordination complexity. Integrating 

federated learning frameworks presents another promising direction, allowing decentralized model training across 

multiple IoT nodes while preserving data privacy and improving scalability. In parallel, exploring adaptive self-tuning 

models and energy-efficient learning algorithms will be essential for enabling deployment in resource-constrained 

embedded environments. 

Collectively, these advancements will pave the way toward more autonomous, robust, and secure smart control 

architectures that can dynamically adapt to environmental variations and process uncertainties. Such innovations will 

not only enhance industrial automation and signal conditioning systems but also extend their applications into emerging 

fields such as biomedical instrumentation, environmental monitoring, and intelligent manufacturing. 
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