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Abstract 

Recommender systems play a crucial role in personalizing user experiences in e-commerce, digital media, and web design. However, traditional 

methods such as Collaborative Filtering and Content-Based Filtering struggle to account for visual preferences, limiting their effectiveness in 

domains were aesthetics influence decision-making, such as website theme recommendations. These systems face challenges such as data 

sparsity, cold-start problems, and an inability to capture intricate visual features. To address these limitations, this study integrates Convolutional 

Neural Networks (CNNs) with advanced recommendation models, including Inception V3, DeepStyle, and Visual Neural Personalized Ranking 

(VNPR), to enhance the accuracy and personalization of visually-aware recommender systems. A quantitative research approach was employed, 

using controlled experiments to evaluate different combinations of feature extractors and recommendation models. Data was sourced from 

ThemeForest, a widely used platform for website themes, and underwent preprocessing to ensure consistency. The models were evaluated using 

precision, recall, F1 score, Mean Average Precision (MAP), and Normalized Discounted Cumulative Gain (NDCG) to measure recommendation 

quality. The results indicate that Inception V3 + VNPR outperforms other model combinations, achieving the highest accuracy in personalized 

theme recommendations. The integration of transfer learning further improved feature extraction and performance, even with limited training 

data. These findings underscore the importance of combining deep learning-based feature extraction with recommendation models to improve 

visually-driven recommendations. This study provides a comparative analysis of CNN-based recommender systems and contributes insights for 

optimizing recommendations in visually complex domains. Despite improvements, challenges such as dataset diversity remain a limitation, 

affecting generalizability. Future research could explore alternative CNN architectures, such as ResNet and DenseNet, and incorporate user 

feedback mechanisms to further enhance recommendation accuracy and adaptability. 
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1. Introduction  

Personalized recommender systems are increasingly important in visual-based content like website themes, where 

subjective and complex factors shape user preferences. These systems help combat information overload by curating 

tailored content and enhancing user engagement in e-commerce, digital media, and e-learning [1]. In industries where 

visual appeal drives satisfaction, such as branding and design, recommender systems that prioritize aesthetic 

preferences improve user interaction by suggesting personalized themes [2]. However, traditional methods like 

Collaborative Filtering (CF) and Content-Based Filtering (CBF) struggle to capture the nuances of visual preferences, 

with CF failing to account for the subjective nature of aesthetics and CBF lacking the sophistication to interpret 

complex visual features like color schemes and layouts [3]. Recent advancements in deep learning, particularly with 

Convolutional Neural Network (CNN), have improved the extraction of complex visual features, making systems better 

at matching user preferences with themes that meet functional and aesthetic needs [4]. Furthermore, incorporating 

personality traits into recommender systems has enhanced personalization, aligning with emotional and aesthetic 

preferences to create deeper user connections [5].  

Traditional recommender systems like CF and CBF struggle with complex visual data, such as images and website 

themes, where aesthetic preferences are crucial. CF faces issues like the cold-start problem and cannot account for 

subjective visual factors, leading to irrelevant recommendations [6], [7]. CBF, which relies on item features, also fails 
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to capture deeper visual qualities like color harmony or layout, resulting in limited recommendations [8]. Additionally, 

both methods depend on sparse user feedback, such as ratings, often lacking in visual domains like website themes, 

causing data sparsity and bias [9]. Integrating visual features into these systems is challenging. Techniques like dual 

neural networks improve feature extraction but require substantial computational resources and quality visual data [10]. 

Additionally, the lack of interpretability in traditional systems can lead to mistrust, particularly when recommendations 

are based on subjective visual preferences. Even accurate recommendations may fail to engage users without clear 

explanations, underscoring the need for more explainable, visually-aware models [11].  

Deep learning and transfer learning have addressed key challenges of traditional recommender systems, especially in 

handling complex visual data. Methods like CF and CBF need help with issues like data sparsity, cold-start problems, 

and capturing intricate visual features. Deep learning, with its ability to extract complex features automatically, 

provides a more effective solution, particularly in domains like website themes and fashion, where visual appeal is 

critical. CNN, for example, can capture high-level visual features like color schemes and textures, offering better 

alignment with user preferences than traditional methods like color histograms [12], [13]. Transfer learning further 

enhances recommender systems by transferring knowledge from pre-trained models to new tasks, particularly when 

labeled data is limited [14]. CNN has effectively incorporated visual features into recommendations, improving 

relevance in visually-driven domains like website themes. These models handle large data volumes and adapt to sparse 

datasets, making them ideal for environments with frequent new items. Moreover, advancements in deep learning, such 

as attention mechanisms, have improved model interpretability, boosting user trust by explaining which visual features 

influenced recommendations [15]. Recent studies have examined the feature extraction capabilities of transfer learning 

method such as AlexNet and Inception V3 in website visual analysis, demonstrating that while AlexNet offers higher 

precision and recall with lower computational cost, Inception V3 is more effective in capturing complex visual patterns 

despite its slower inference time [16]. These findings highlight the trade-off between computational efficiency and 

feature extraction depth, emphasizing the need for model selection based on application-specific requirements. 

More literature is needed to compare different CNN architectures and recommendation models for visual content, such 

as website themes. While CNN is effective for feature extraction, its integration with recommendation models like 

DeepStyle and VNPR has yet to be explored. Most research focuses on individual models or narrow use cases, leaving 

the potential benefits of combining advanced CNN, such as AlexNet or Inception V3, with recommender models 

largely unexamined. Additionally, while transfer learning offers promising improvements in feature extraction, its 

impact on recommendation accuracy has yet to be fully explored. This research aims to fill these gaps by comparing 

various CNN architectures and recommendation models, providing insights into optimizing visually-aware 

recommender systems for more personalized and accurate theme recommendations. The study focused on identifying 

the best combination of feature extractors and recommendation models to enhance website theme recommendations. It 

aimed to address challenges faced by traditional systems in handling complex visual data, using deep learning and 

transfer learning to improve performance. The research evaluated CNN architectures like AlexNet and Inception V3 

for feature extraction from theme images. It tested different models, including DeepStyle and VNPR, to determine 

which combination offered the best user satisfaction and personalization.  

2. Literature Review  

2.1. Recommender Systems 

Recommender systems are vital for enhancing user experience in digital platforms, particularly e-commerce, 

entertainment, and social media. They typically rely on three main approaches: CF, CBF, and Hybrid Methods. CF 

uses user behavior to recommend items based on similar users' preferences. One common method is the cosine 

similarity between the rating vectors of two users 𝑢 and 𝑣 for items: 

Cosine Similarity =
∑ 𝑟𝑢,𝑖
𝑛
𝑖=1 ⋅𝑟𝑣,𝑖

√∑ 𝑟𝑢,𝑖
2𝑛

𝑖=1 ⋅√∑ 𝑟𝑣,𝑖
2𝑛

𝑖=1

   (1) 
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Where ru,i and rv,i  represent the ratings given by users u and v to item i, and n is the number of items considered. This 

formula measures the cosine of the angle between the rating vectors, with values closer to 1 indicating high similarity 

between users. 

CBF recommends items based on their features, such as recommending action films with a particular actor [17]. The 

similarity between two items 𝑖 and 𝑗 is calculated by comparing their feature vectors 𝑓𝑖  and 𝑓𝑗 using cosine similarity: 

Cosine Similarity =
𝑓𝑖⋅𝑓𝑗

|𝑓𝑖||𝑓𝑗|
  (2) 

Where 𝑓𝑖 and 𝑓𝑗 are the feature vectors of items 𝑖 and 𝑗, and ∥f∥ denotes the vector's Euclidean norm. This method 

quantifies the similarity of two items based on their features, such as genre, keywords, or visual attributes. 

Hybrid methods combine CF and CBF to improve accuracy and diversity by incorporating user behavior and item 

features [18]. While these methods are effective in many domains, they face challenges in visually-driven areas like 

website themes, where aesthetic factors often influence user preferences. CF, for example, needs help with data sparsity 

and the cold-start problem, particularly in visual domains, while CBF can lead to narrow suggestions and requires 

substantial feature extraction. Hybrid methods address these weaknesses but still face challenges in capturing the full 

complexity of visual preferences. 

Recent advancements in machine learning and data analytics have improved the performance of recommender systems, 

enabling more accurate predictions and better handling of large datasets. As digital content grows, sophisticated 

systems are essential for helping users navigate content overload and ensuring personalized experiences [19]. However, 

traditional methods need help to handle visual content, such as images, videos, and website themes, leading to less 

relevant recommendations and user dissatisfaction. CF and CBF, while effective in text-based or numerical data, fail 

to capture the complexity of visual preferences, especially in design and fashion. These methods often overlook 

intrinsic visual features or rely on incomplete metadata, which limits recommendation diversity and engagement [20]. 

Moreover, aesthetic qualities like balance and harmony, essential in design-related fields, are often overlooked [19]. 

Hybrid methods improve upon these challenges but still require advanced techniques for visual feature extraction and 

struggle to account for evolving aesthetic preferences [21]. 

2.2. Visual Feature Extraction with CNN 

CNN has become essential in deep learning, particularly for processing visual data such as image classification, object 

detection, and segmentation. CNN is designed to learn spatial hierarchies of features, such as edges, textures, and 

shapes, making them ideal for tasks involving complex visual patterns. Their architecture, including convolutional and 

pooling layers, enables CNN to capture hierarchical features that traditional methods struggle to identify [22]. In CNN, 

the output of a convolutional layer is computed by applying a filter 𝑤 to the input image 𝑥 through convolution: 

𝑦𝑖,𝑗 = (𝑥 ∗ 𝑤)𝑖,𝑗 = ∑ ∑ 𝑥𝑖+𝑚,𝑗+𝑛𝑤𝑚,𝑛𝑛𝑚   (3) 

Where 𝑥 is the input image, 𝑤 is the convolutional filter (also called kernel), and 𝑦 is the resulting feature map. This 

operation extracts local patterns from the image by sliding the filter across different regions. 

By learning directly from raw pixel data, CNN eliminates manual feature extraction, outperforming traditional machine 

learning methods, especially in visual tasks requiring large datasets and computational resources. Despite their 

effectiveness, CNNs face challenges such as the need for large labeled datasets and susceptibility to overfitting, 

particularly on small datasets. Their "black box" nature also limits interpretability, making it difficult to understand the 

decision-making process behind predictions [23]. 

AlexNet and Inception V3 have been particularly influential among the various CNN architectures. AlexNet, 

introduced in 2012, outperformed traditional methods in the ImageNet Challenge, using five convolutional layers and 

three fully connected layers, with techniques like ReLU and dropout to accelerate training and improve generalization 

[24]. However, it has limitations in scalability and handling complex image patterns. In contrast, Inception V3, 

introduced in 2015, uses the Inception module to learn features at multiple scales, improving performance and 

efficiency. It outperforms AlexNet in classification accuracy while requiring fewer parameters, making it more 

computationally efficient. Inception V3 also integrates well with transfer learning, enabling pre-trained models for 
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specific tasks and reducing the need for large datasets [25]. CNN have been successfully applied in various 

recommendation scenarios, from e-commerce to healthcare, where they enhance recommendation accuracy by 

extracting complex visual features from images, as seen in fashion, movie recommendations, and health product 

predictions. While CNNs require large labeled datasets, transfer learning has made their application feasible even in 

data-scarce contexts [13]. 

2.3. Transfer Learning in Recommender Systems 

Transfer learning is a key technique in deep learning, particularly for CNN tasks. It involves adapting a pre-trained 

model, trained on a large dataset for one task, to a new, related task, improving model performance, especially when 

labeled data is limited. Transfer learning allows a pre-trained model to be adapted to a new task by updating the model’s 

weights through backpropagation. The weight update rule in gradient descent is given by: 

Wnew = Wold − η
∂L

∂W
   (6) 

Where 𝑊new is the updated weight, 𝑊old is the current weight, 𝜂 is the learning rate, and 
𝜕𝐿

𝜕𝑊
 represents the gradient 

of the loss function 𝐿 with respect to the weights 𝑊. This formula shows how weights are adjusted to minimize the 

loss during training. 

This approach is particularly valuable in medical imaging and e-commerce fields, where acquiring labeled data can be 

difficult or costly. Transfer learning allows models to leverage knowledge from the original task, improving efficiency 

and accuracy without requiring extensive new datasets. For example, acquiring large annotated datasets in medical 

imaging is challenging due to privacy concerns and expert annotation needs [26]. Transfer learning overcomes this by 

fine-tuning pre-trained models, like those trained on ImageNet, enabling models to retain lower layers while adapting 

top layers for new tasks, enhancing speed and accuracy [27]. This technique has been successfully applied across 

various domains, including Alzheimer’s diagnosis and remote sensing [28].  

In recommender systems, transfer learning optimizes feature extraction by reusing pre-trained models and improving 

recommendation quality, especially for visual features in domains like website themes. This technique enables more 

personalized recommendations by leveraging learned visual features, reducing the need for large datasets. Transfer 

learning also lowers computational costs by fine-tuning only the top layers of models, making the process more 

resource-efficient [29]. It improves generalization, reduces overfitting, and provides a strong foundation for new tasks. 

Additionally, transfer learning allows combining multiple CNN architectures to enhance feature extraction for complex 

tasks like personalized product recommendations. However, challenges like negative transfer, where the pre-trained 

model's knowledge doesn’t fit the new task, remain, emphasizing the importance of carefully selecting appropriate 

models and fine-tuning [30]. 

2.4. Current Approaches in Visually-Aware Recommender Systems 

Visually-aware recommender systems have advanced significantly with deep learning models like DeepStyle and 

VNPR. Both models use CNN and transfer learning to improve feature extraction, making recommendations more 

accurate and personalized by integrating visual content. These models represent a shift towards incorporating visual 

features into recommendation systems, allowing for more engaging suggestions based on aesthetic and preference data. 

DeepStyle focuses on artistic style transfer, applying one image's visual style to another's content. It uses CNNs to 

extract features from content and style images, creating new images that blend these elements. The model benefits from 

pre-trained CNNs, like VGG19, which capture rich visual features learned from large datasets like ImageNet, 

significantly enhancing the quality of generated images [31].  

In contrast, VNPR integrates visual content into the personalized ranking process, combining visual features with user 

interaction data to improve recommendations. Using CNNs to extract meaningful visual features, VNPR enhances the 

relevance of recommendations by tailoring them to both user preferences and visual appeal. Transfer learning is critical, 

enabling the model to leverage pre-trained CNNs and adapt to new tasks with limited data [32]. This approach helps 

VNPR handle the cold-start problem, where new items need more interaction data, and improves recommendations for 

less-interacted items. The hybrid model has shown superior performance, with related models like VBPR (Visual 

Bayesian Personalized Ranking) demonstrating enhanced user engagement by incorporating visual signals and latent 
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factors. Both models highlight the importance of visual content in shaping user preferences, aligning with research 

advocating for integrating visual feature learning into personalized recommendation systems [33]. 

3. Methodology  

The research flowchart in figure 1 illustrates the sequential steps of the study, outlining the processes of data collection, 

preprocessing, feature extraction, model training, and evaluation. It clearly represents the methodology used to 

optimize the recommender systems for image-based website themes using transfer learning. 

 

Figure 1. Research Flowchart 

3.1. Research Design 

This study used a quantitative research design with controlled experiments to evaluate the performance of various 

model combinations in recommender systems for image-based website themes. The main goal was to systematically 

compare feature extractors and recommendation models to optimize visual content recommendations. The quantitative 

approach allowed for precise measurement across key metrics, providing a data-driven assessment of which 

combinations delivered the highest accuracy and relevance in recommendations. Controlled experiments were designed 

to isolate the effects of each feature extractor and recommendation model pairing, ensuring that performance 

differences were attributable to the specific combinations tested. Multiple configurations of feature extractors, such as 

AlexNet and Inception V3, were paired with models like DeepStyle and VNPR, and all combinations were evaluated 

under consistent conditions. 

Data for the experiments were collected from a curated dataset of website theme images, representing a broad range of 

visual styles, layouts, and design elements. The dataset was pre-processed to standardize image quality and dimensions. 

Each model combination was trained and tested using a consistent data split of 70% for training, 15% for validation, 

and 15% for testing, ensuring robust evaluation. Performance metrics, including precision, recall, F1 score, Mean 

Average Precision (MAP), and Normalized Discounted Cumulative Gain (NDCG), were used to assess 

recommendation quality, capturing accuracy, relevance, and ranking effectiveness. Statistical analysis was performed 

to identify significant differences in performance, providing insights into the optimal feature extractor and model 

combinations for image-based content recommendations. This research design enabled a comprehensive evaluation of 

how feature extractors and recommendation models interact to enhance accuracy and user satisfaction in visually 

complex domains like website themes. 

3.2. Data Collection 

Data for this study were collected from ThemeForest, a widely used platform offering a broad range of website themes 

that include diverse visual styles, layouts, and aesthetics. This platform was chosen due to its extensive repository of 
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popular themes and detailed user feedback, which provides a rich dataset for training and evaluating recommender 

systems. The data collection process utilized a combination of automated web scraping using Python libraries (Scrapy 

and BeautifulSoup) and manual downloads to ensure data completeness. Scrapy facilitated the extraction of structured 

web content, while BeautifulSoup parsed HTML elements to identify and retrieve images and metadata. Manual 

downloads were employed for dynamic content or websites with protective measures against scraping, ensuring that 

the dataset accurately reflected contemporary design trends in website themes.   

Despite its diversity, the ThemeForest dataset exhibits biases that impact model generalizability and recommendation 

effectiveness. Corporate, minimalist, and e-commerce-oriented themes are overrepresented, while artistic, portfolio-

based, and experimental designs remain underrepresented. This imbalance skews model learning, making it more 

proficient at recommending conventional website themes but potentially ineffective at identifying unique or 

unconventional styles. As a result, the model may struggle when encountering unseen themes, particularly those 

reflecting niche, culturally specific, or highly creative aesthetics. The dominance of flat, material, and minimalist 

designs further reinforces this bias, limiting the model’s adaptability to skeuomorphic or abstract styles, which are rare 

in the dataset. This trend highlights the need for more diverse data sources to enhance model robustness and external 

validity. While ThemeForest primarily features commercially viable themes, it lacks region-specific, experimental, or 

non-commercial designs, reducing its applicability in alternative contexts. The dataset is also largely dominated by 

Western themes, potentially limiting its effectiveness for users in non-Western regions. Addressing these gaps requires 

expanding data sources by integrating additional theme marketplaces such as TemplateMonster, Creative Market, and 

Envato Elements, as well as incorporating user-generated themes from platforms like Dribbble, Behance, and GitHub 

to capture emerging design trends. Furthermore, synthetic data generation techniques, such as GANs and style transfer 

algorithms, could help mitigate biases by generating diverse themes that improve model robustness. Future research 

should also explore multilingual and industry-specific themes to enhance the model’s adaptability across different 

domains, ensuring a broader and more inclusive representation of website design aesthetics. 

3.3. Data Preprocessing 

The preprocessing of images was a crucial step in preparing the dataset for model training, ensuring that the data was 

standardized and suitable for deep learning algorithms. All images collected from Behance, Awwwards, and 

ThemeForest were resized to 224x224 pixels, a standard input size for CNN such as AlexNet and Inception V3. This 

resizing not only ensured uniformity across the dataset but also optimized the computational efficiency of the models, 

as smaller image dimensions reduced the overall processing load without compromising the ability to capture key 

visual features. Alongside resizing, color values were standardized by normalizing the pixel values to a consistent 

range, typically between 0 and 1. This normalization helped to enhance model performance by reducing the influence 

of lighting variations and other inconsistencies in the images, ensuring that the models could focus on learning the 

relevant visual patterns rather than being distracted by irrelevant color variations. Data augmentation techniques were 

also applied to enhance the diversity of the dataset, which is critical in deep learning to improve the generalization 

capability of the models. The augmentation process included a series of transformations such as rotation, scaling, and 

cropping. Rotational adjustments allowed the models to learn from images at various orientations, making the system 

more robust to different viewing angles of website themes. Scaling transformations involved resizing images either up 

or down, helping the model become adept at recognizing themes regardless of the scale of visual elements within the 

image. Cropping was used to simulate partial views of themes, training the models to recognize and recommend themes 

even when only a portion of the design was visible. These augmentation techniques significantly expanded the effective 

size of the training dataset, providing the models with a broader range of visual scenarios and reducing the risk of 

overfitting. 

Each augmentation was carefully parameterized to maintain the visual integrity of the website themes. For instance, 

rotations were limited to a range of ±15 degrees to prevent extreme distortions that could misrepresent the original 

design. Similarly, scaling factors were kept within 80% to 120% of the original image size to ensure that augmented 

images remained realistic and visually coherent. Cropping was executed with a focus on the central areas of the images 

to preserve the most relevant design features. These controlled augmentations allowed the dataset to retain its original 

characteristics while offering a richer set of training examples that could better reflect the variability seen in real-world 

website themes. The preprocessing and augmentation steps ensured the dataset was standardized and enriched with 
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diverse visual examples, enhancing the models’ ability to learn and generalize across different website theme designs. 

This comprehensive approach to data preprocessing was fundamental in preparing the data for subsequent training and 

evaluation, providing a solid foundation for optimizing the performance of the recommender systems through deep 

learning techniques. 

3.4. Feature Extraction 

Feature extraction was a critical component of this study, involving using TensorFlow to implement deep learning 

models for analyzing the visual data of website themes. The feature extraction process leveraged two well-established 

CNN architectures: AlexNet and Inception V3. These models were chosen due to their proven capabilities in extracting 

detailed and hierarchical features from images, making them ideal for the complex visual patterns inherent in website 

themes. TensorFlow, a widely used deep learning framework, facilitated the efficient implementation and integration 

of these CNN architectures into the recommender system pipeline. AlexNet, one of the pioneering CNN architectures, 

processed visual data through a series of convolutional and pooling layers designed to capture essential features from 

input images. The architecture consisted of five convolutional layers followed by three fully connected layers, 

employing ReLU (Rectified Linear Unit) activations to introduce non-linearity and dropout layers to prevent 

overfitting. AlexNet’s initial layers detected simple features such as edges and textures, while subsequent layers 

identified more complex patterns like shapes and object parts. The final fully connected layers combined these extracted 

features into a compact representation that captured the overall visual characteristics of the image. This hierarchical 

processing enabled AlexNet to learn low-level and high-level visual cues, making it particularly effective in 

understanding the aesthetic elements of website themes. 

Inception V3, a more advanced architecture, utilized a unique approach to feature extraction by incorporating inception 

modules that allowed the network to perform convolutions of varying sizes simultaneously. This multi-scale processing 

enabled Inception V3 to capture features at different levels of granularity, from fine details to broader patterns, 

enhancing its ability to represent complex visual data. The architecture included factorized convolutions and auxiliary 

classifiers, which reduced computational costs while maintaining high accuracy. Inception V3’s deeper structure and 

innovative module design allowed the model to extract richer features than traditional CNN. Each inception module 

performed convolutions using multiple filter sizes (e.g., 1x1, 3x3, and 5x5), effectively broadening the network’s 

receptive field and allowing it to learn diverse feature representations from the same input. The feature extraction 

process using AlexNet and Inception V3 involved passing each preprocessed image through the network and extracting 

the output from specific layers that captured the most relevant features for the task. In AlexNet, features were typically 

extracted from the final pooling layer before the fully connected layers, where the representation was dense yet retained 

critical spatial information. For Inception V3, features were extracted from the final inception module, which provided 

a multi-dimensional representation of the visual content. These extracted features were flattened and standardized, 

forming the input vectors for subsequent recommendation model training. This feature extraction strategy ensured that 

the recommender system utilized comprehensive visual representations, enhancing its ability to match user preferences 

with suitable website themes. The combined use of AlexNet and Inception V3 allowed for detailed visual content 

analysis, with each architecture contributing distinct strengths in capturing various aspects of theme design. This dual 

approach to feature extraction provided a robust foundation for optimizing the recommender system’s performance, 

ultimately leading to more accurate and aesthetically aligned recommendations. 

While Inception V3 has been selected for this study due to its strong performance in extracting multi-scale features, 

alternative CNN architectures such as ResNet (Residual Network) and DenseNet (Densely Connected Convolutional 

Network) offer distinct advantages in deep feature extraction and computational efficiency. ResNet, introduced as a 

solution to the vanishing gradient problem, employs residual connections, allowing gradient flow through deeper layers 

without degradation. This skip-connection mechanism enables ResNet to train extremely deep architectures (e.g., 

ResNet-50, ResNet-101) while maintaining robust feature extraction. DenseNet, on the other hand, employs dense 

connectivity, where each layer is directly connected to all subsequent layers. This structure enhances feature reuse, 

leading to a more parameter-efficient network with improved gradient flow, reducing redundancy in learned 

representations. 



Journal of Applied Data Sciences 

Vol. 6, No. 2, May 2025, pp. 952-968 

ISSN 2723-6471 

959 

 

 

 

Compared to Inception V3, ResNet and DenseNet excel in capturing deeper visual features. ResNet is effective in 

extracting hierarchical features from high-resolution images, while DenseNet mitigates overfitting on small datasets 

due to efficient parameter sharing. However, ResNet requires higher computational resources, while DenseNet’s 

increased feature reuse can lead to memory bottlenecks. Inception V3’s multi-scale feature extraction capabilities allow 

it to process fine-grained and coarse visual details, making it useful for website themes where hierarchical feature 

representations are required. It’s also computationally more efficient than deeper ResNet variants and dense 

architectures, making it suitable for large-scale recommendation systems. Future work should explore integrating 

ResNet and DenseNet in visually-aware recommender systems to assess their effectiveness in handling diverse theme 

aesthetics and user preferences. A comparative study comparing multi-scale feature extraction (Inception V3), deep 

residual learning (ResNet), and efficient feature reuse (DenseNet) could provide insights into optimizing CNN-based 

recommendation models. Leveraging hybrid architectures that combine the strengths of multiple CNNs may offer 

further improvements in recommendation accuracy, generalization, and computational efficiency. 

3.5. Recommender Model Training 

The study's crucial recommender model training phase involved using DeepStyle and VNPR models to integrate and 

optimize the extracted features from AlexNet and Inception V3. These models were chosen for their ability to handle 

complex visual data and personalized recommendations, each offering distinct approaches to enhancing 

recommendation accuracy. Integrating extracted features into DeepStyle and VNPR required careful alignment of 

feature dimensions and data normalization to ensure compatibility between the CNN outputs and the models’ input 

layers. Both models were trained using mini-batch gradient descent, with scattered data data to enhance generalization. 

The training involved iterating over the dataset multiple times and adjusting model weights to minimize the respective 

loss functions—mean squared error for DeepStyle and ranking loss for VNPR. The training process was monitored 

using validation sets to prevent overfitting and to gauge model performance throughout the optimization. 

Hyperparameter tuning was conducted to optimize the performance of both models, focusing on parameters such as 

learning rates, batch sizes, and the number of hidden layers in the MLP for VNPR. Grid and random search methods 

were employed to systematically explore different hyperparameter combinations. Learning rates were tuned to balance 

convergence speed with stability, with values tested at 0.001 to 0.01. Batch sizes were varied between 32 and 128 to 

find the optimal trade-off between training speed and model accuracy. For DeepStyle, the number of latent factors 

representing user and item features was also adjusted, with tuning to find the ideal balance between model complexity 

and overfitting risk. 

Additionally, regularization techniques such as L2 regularization were applied to both models to control the magnitude 

of weights and reduce the likelihood of overfitting. Dropout layers were introduced within the MLP structure of VNPR 

to further enhance model robustness by randomly deactivating neurons during training, promoting a more generalized 

learning process. The outcome of the hyperparameter tuning was a set of optimized configurations for each model that 

maximized their predictive accuracy and alignment with user preferences. This comprehensive training and 

optimization process ensured that DeepStyle and VNPR were finely tuned to effectively leverage the extracted visual 

features, enhancing the overall recommendation quality. The combined use of these models allowed the study to 

explore multiple dimensions of personalization, providing a robust framework for recommending image-based website 

themes based on aesthetic and interaction-driven insights. 

DeepStyle was selected for its ability to leverage deep visual similarity learning by integrating CNNs with matrix 

factorization, making it well-suited for aesthetic-driven recommendations. In contrast, VNPR optimized ranking 

positions through implicit and explicit feedback, allowing for more personalized and behavior-driven 

recommendations. While models such as VBPR, NCF, and Transformer-based recommenders were considered, they 

were not selected due to computational constraints, complexity in hyperparameter tuning, and their reliance on large-

scale user-item interaction datasets. The scattered dataset partitioning strategy was implemented to ensure fair 

representation of diverse design aesthetics across training, validation, and testing sets, preventing overrepresentation 

of dominant styles and improving model robustness. This stratified sampling method distributed themes across 

corporate, artistic, and e-commerce categories, reducing bias and enhancing adaptability to unseen styles. The 

combination of DeepStyle’s aesthetic similarity learning with VNPR’s ranking optimization provides a comprehensive 

evaluation of CNN-based feature extraction within visually-driven recommender systems, while the scattered dataset 
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approach ensures model generalization and mitigates overfitting risks. Future research may explore adaptive data 

augmentation techniques alongside this partitioning strategy to further enhance model robustness in image-based theme 

recommendations. 

3.6. Experimental Setup 

The experimental setup was designed to systematically evaluate the performance of different combinations of feature 

extractors and recommender models. Four distinct combinations were tested: AlexNet integrated with DeepStyle, 

AlexNet integrated with VNPR, Inception V3 integrated with DeepStyle, and Inception V3 integrated with VNPR. 

These pairings were chosen to assess how different CNN architectures, when combined with specific recommendation 

models, influence the accuracy and relevance of recommendations for image-based website themes. The goal was to 

identify which combination offered the best performance in capturing visual aesthetics and user preferences and 

optimizing the recommendation system. The dataset was split into three subsets: 70% for training, 15% for validation, 

and 15% for testing. This split was implemented to ensure the models had sufficient data to learn from while allowing 

for robust evaluation and fine-tuning. The training set was used to fit the models, learning the relationships between 

the visual features and user preferences. The validation set was employed during model training to tune 

hyperparameters and monitor performance, helping to prevent overfitting by measuring how well the model generalized 

to unseen data. Finally, the testing set served as an independent evaluation of the model's performance, ensuring that 

the results reflected real-world applicability and were not biased by prior exposure during training. 

The performance of each model combination was assessed using a comprehensive set of evaluation metrics that 

captured various aspects of recommendation quality. Precision was used to measure the proportion of relevant 

recommended items, reflecting the model’s accuracy in suggesting suitable website themes. Recall evaluated the ability 

of the model to identify all relevant items from the set of possible recommendations, providing insights into how well 

the model captured user preferences comprehensively. The F1 score, the harmonic means of precision and recall, 

offered a balanced view of the model’s performance, particularly in scenarios where precision and recall might be at 

odds. Further evaluation was conducted using MAP, which assessed the overall ranking quality of the recommendations 

by averaging precision scores at different cut-off points. MAP was particularly useful in measuring how well the models 

ranked relevant items higher in the recommendation list, directly impacting user satisfaction. NDCG was also employed 

to evaluate the ranking quality, focusing on the position of relevant items within the recommendation list. NDCG 

considered the importance of ranking relevant items higher, providing a metric that factored in the relevance and the 

order of the recommended themes, which is crucial for user-centric applications where the top-ranked items 

significantly influence user engagement. 

To ensure robustness and mitigate overfitting, a fixed 70%-15%-15% train-validation-test split was adopted, balancing 

sufficient training data with independent validation for hyperparameter tuning and an unseen test set. While fixed splits 

are common, k-fold cross-validation could offer a more reliable assessment by iterating training and testing across 

multiple partitions. Future research should explore stratified k-fold cross-validation to ensure a balanced representation 

of different theme styles and enhance model generalization. Alternative regularization techniques like dropout and L2 

weight decay can also improve robustness. The dataset split aimed to preserve diversity across website theme aesthetics, 

but ThemeForest’s dataset exhibits inherent biases, with corporate and e-commerce themes overrepresented. To address 

this limitation, future studies should incorporate additional sources and explore synthetic data generation to expand 

dataset diversity. Domain adaptation techniques could improve generalizability by pre-training models on larger 

datasets before fine-tuning them for website theme recommendations. This would enhance adaptability to evolving 

design trends and user preferences, strengthening external validity and ensuring the recommender system remains 

effective across diverse website themes and styles. 

4. Results and Discussion 

4.1. Overview of Experimental Results 

This research evaluates the effectiveness of various combinations of feature extraction methods and recommender 

models for the specific task of image-based website theme recommendations. The study employs two widely used 

CNN architectures—AlexNet and Inception V3—as feature extractors, paired with two recommender models: 
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DeepStyle and VNPR. The primary objective is to determine the optimal combination of feature extraction and ranking 

methodology to achieve superior recommendation performance for visually rich data. A systematic evaluation used 

five key metrics: precision, recall, F1 score, MAP, and NDCG. These metrics collectively assess the ability of each 

model combination to accurately retrieve relevant themes, balance relevance and coverage, and prioritize the most 

visually relevant recommendations at the top of the ranking list. The table 1 below summarizes the performance metrics 

for all tested combinations of feature extractors and recommender models. These values highlight the trade-offs 

between different configurations and underline the superior performance of Inception V3 integrated with VNPR. 

Table 1. Comparison Of Performance Metrics for All Model Combinations 

CNN VR Precision Recall F1 Score MAP NDCG 

AlexNet DeepStyle 0.9062 0.9114 0.9181 0.9072 0.9279 

 VNPR 0.9200 0.9300 0.9400 0.9100 0.9400 

Inception V3 DeepStyle 0.9460 0.9506 0.9425 0.9479 0.9620 

 VNPR 0.9600 0.9700 0.9600 0.9600 0.9700 

To ensure the observed performance differences between model combinations aren’t due to chance, statistical 

significance tests were conducted. A paired t-test compared Inception V3 integrated with VNPR to other configurations 

on precision, recall, F1 score, MAP, and NDCG. Inception V3 + VNPR significantly outperformed all others (p < 

0.05). Confidence intervals (95% CI) showed Inception V3 + VNPR’s superiority is robust. Precision (0.96 ± 0.003), 

recall (0.97 ± 0.004), and NDCG (0.97 ± 0.002) intervals suggest this. A one-way ANOVA confirmed at least one 

model combination had significantly different performance (F(3, 56) = 15.32, p < 0.001). Post-hoc Tukey’s HSD tests 

revealed Inception V3 + VNPR outperformed AlexNet-based models (p < 0.01) and DeepStyle within the same CNN 

framework (p < 0.05). These tests validate the results, showing Inception V3 + VNPR consistently outperforms others.  

Inception V3 integrated with VNPR consistently outperformed all other model combinations, achieving the highest 

values across all evaluation metrics. This combination reached a precision of 0.96, demonstrating its exceptional 

accuracy in recommending relevant themes, while a recall of 0.97 reflects its comprehensive ability to identify all 

relevant items. The NDCG of 0.97 further indicates its effectiveness in prioritizing the most relevant themes, making 

it the most suitable choice for visually intensive recommendation systems. AlexNet integrated with VNPR produced 

competitive results, particularly in computationally constrained scenarios. This configuration achieved a commendable 

F1 score of 0.94 and a MAP of 0.91, indicating its reliability in balancing precision and recall while ranking relevant 

items appropriately. Although its performance metrics were slightly lower than those of Inception V3 integrated with 

VNPR, it remains a viable option for systems requiring faster inference times or reduced computational overhead. 

DeepStyle models, although effective, exhibited lower performance compared to VNPR-based combinations. This is 

particularly evident in ranking-related metrics such as MAP and NDCG, where DeepStyle-based configurations 

consistently lagged. These results suggest that DeepStyle needs to gain the advanced ranking capabilities inherent to 

VNPR, which excels in leveraging user-specific preferences and implicit feedback to optimize recommendations. 

To further elucidate each model combination's relative strengths and weaknesses, figure 2 presents a bar chart that 

visualizes the performance metrics—precision, recall, F1 score, MAP, and NDCG—across all configurations. This 

visualization highlights the superior performance of Inception V3 integrated with VNPR, particularly regarding ranking 

quality (MAP, NDCG) and recommendation relevance (precision, recall). 
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Figure 2. Performance Comparison Bar Chart 

The MAP and NDCG metrics further underscore the ranking quality of the recommendations, with Inception V3 

integrated with VNPR excelling in both measures. The MAP score of 0.96 reflects the model’s effectiveness in ranking 

the most relevant themes higher in the recommendation list. In contrast, an NDCG score of 0.97 demonstrates its ability 

to appropriately prioritize items based on relevance. AlexNet integrated with VNPR, while achieving a respectable 

MAP of 0.91 and NDCG of 0.94, lags slightly behind Inception V3 integrated with VNPR, likely due to the less 

sophisticated feature extraction capabilities of AlexNet. DeepStyle-based models, though effective in some contexts, 

exhibit consistently lower MAP and NDCG scores compared to VNPR-based models, indicating their relative 

weakness in ranking optimization.  

While precision, recall, F1 score, MAP, and NDCG are primary evaluation metrics for recommender systems, diversity 

and novelty are also crucial. Diversity measures how different recommended themes are, ensuring variety and 

preventing visual similarity. Novelty evaluates how often unique themes are recommended, providing fresh content. 

Since VNPR incorporates user-specific ranking adjustments, it may provide more personalized but less diverse 

recommendations compared to DeepStyle, which emphasizes visual similarity. This trade-off should be further 

examined. Future research could integrate diversity and novelty metrics to assess how feature extractors and ranking 

models influence theme variety. Combining diversity-aware objective functions and adaptive weighting mechanisms 

could improve balance between relevance, diversity, and novelty. 

To provide additional insights into the impact of feature extraction on recommendation performance, table 2 compares 

AlexNet and Inception V3 across key architectural and performance dimensions. AlexNet, while computationally 

efficient, extracts less nuanced features, which may limit its ability to capture complex visual patterns in website 

themes. In contrast, Inception V3 employs multi-scale convolutions that enable it to extract detailed and hierarchical 

features, contributing to its superior precision and ranking metrics performance. This architectural advantage is evident 

in the performance differences between combinations involving these feature extractors, with Inception V3 consistently 

leading across all tested metrics. 

Table 2. Comparison of AlexNet and Inception V3 Across Key Dimensions 

Dimension AlexNet Inception V3 

Feature Extraction Extracts simpler features suitable for basic 

patterns and smaller-scale tasks. 

Extracts complex, multi-scale features capturing 

fine details and broader patterns. 

Feature Dimensions 4096 2048 (final pooling layer) 

Precision (Best 

Value) 

0.92 (AlexNet integrated with VNPR) 0.96 (Inception V3 integrated with VNPR) 

Recall (Best Value) 0.93 (AlexNet integrated with VNPR) 0.97 (Inception V3 integrated with VNPR) 
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F1 Score (Best 

Value) 

0.94 (AlexNet integrated with VNPR) 0.96 (Inception V3 integrated with VNPR) 

MAP (Best Value) 0.91 (AlexNet integrated with VNPR) 0.96 (Inception V3 integrated with VNPR) 

NDCG (Best Value) 0.94 (AlexNet integrated with VNPR) 0.97 (Inception V3 integrated with VNPR) 

Inference Time Faster (~63 seconds per batch) Slower (~223 seconds per batch) 

Strengths Computationally efficient, suitable for 

resource-constrained scenarios. 

Superior for tasks requiring high detail and 

multi-scale feature representation. 

Limitations Struggles with complex patterns and large 

datasets. 

High computational cost and slower inference 

time. 

Figure 3 visually illustrates the MAP and NDCG scores across different ranking cutoffs for all tested combinations. 

This chart highlights the ability of each model combination to maintain high-ranking quality as the cutoff threshold 

increases. Inception V3 integrated with VNPR consistently achieves the highest scores, demonstrating robust ranking 

performance even at broader cutoff levels. AlexNet integrated with VNPR, while competitive, shows a slight decline 

in ranking quality as the cutoff threshold expands, reflecting the architectural limitations of AlexNet in capturing 

complex patterns. 

 

 

Figure 3. MAP and NDCG Across Ranking Cutoffs 

The experimental results unequivocally demonstrate that combining advanced feature extraction with sophisticated 

ranking mechanisms yields significant improvements in recommendation performance. Specifically, the Inception V3 

integrated with VNPR configuration consistently delivers the best results across all metrics, underscoring its capability 

to effectively balance accuracy, coverage, and ranking quality. This combination is well-suited for visually complex 

tasks, where capturing nuanced design elements and prioritizing user-specific preferences are critical for success. While 

the AlexNet integrated with VNPR combination offers competitive performance, particularly regarding recall and F1 

score, it does not achieve the same level of ranking precision as Inception V3 integrated with VNPR. Nevertheless, its 

lower computational requirements make it a practical choice for systems operating under resource constraints. These 

quantitative results validate the effectiveness of Inception V3 integrated with VNPR as the optimal combination for 
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image-based website theme recommendations and provide valuable insights into the interplay between feature 

extraction and ranking methodologies. The findings emphasize the importance of leveraging advanced feature 

extraction architectures and personalized ranking models to achieve superior recommendation performance, 

particularly in visually complex domains. 

4.2. Discussion 

The findings of this study align with and expand upon previous research on visually-aware recommender systems by 

demonstrating the effectiveness of integrating CNN-based feature extraction with advanced ranking methodologies. 

Traditional recommender systems, such as collaborative filtering (CF) and content-based filtering (CBF), have been 

widely used across e-commerce, entertainment, and digital media platforms. However, these methods often fail to 

capture the complexity of visual preferences, which are essential in domains like website theme recommendations. 

Prior studies have highlighted the limitations of CF, particularly in handling data sparsity and cold-start problems, 

while CBF, despite its ability to leverage item attributes, struggles with personalization and tends to provide narrow, 

overly similar recommendations [17], [18]. Hybrid methods combining CF and CBF have been proposed to mitigate 

these limitations, but they still require effective visual feature extraction to fully capture user preferences [19].   

Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have significantly 

improved visual feature extraction capabilities in recommendation systems[22]. CNNs, such as AlexNet and Inception 

V3, have demonstrated superior performance in learning hierarchical visual representations, making them well-suited 

for visually-aware recommendations [24], [25]. This study's findings confirm that Inception V3 outperforms AlexNet 

due to its ability to extract multi-scale features, which is consistent with previous studies that have shown Inception-

based architectures achieving higher classification accuracy and feature richness in image-driven tasks[13]. Similarly, 

transfer learning has proven to be an essential tool in reducing the need for large labeled datasets while improving 

model generalization [27], [28]. However, negative transfer remains a concern when applying pre-trained CNNs to 

visually distinct domains, as ImageNet-trained models are primarily optimized for natural image recognition rather 

than structured web design elements[29]. This study's use of fine-tuning strategies, such as freezing lower convolutional 

layers and adjusting learning rates, aligns with best practices in mitigating negative transfer and optimizing feature 

adaptation for website themes[30].   

In the realm of visually-aware recommender systems, models such as DeepStyle and VNPR have emerged as effective 

solutions for integrating visual content into recommendation pipelines[31], [32]. DeepStyle focuses on aesthetic 

similarity by leveraging CNN-based visual embeddings, making it highly suitable for style-centric recommendations 

in domains such as fashion, digital art, and website themes. However, consistent with prior studies, this research found 

that DeepStyle underperforms in ranking-based metrics such as MAP and NDCG compared to VNPR. This can be 

attributed to DeepStyle’s reliance on visual similarity rather than personalized ranking strategies. VNPR, in contrast, 

integrates implicit and explicit feedback to optimize recommendation rankings, allowing it to achieve higher 

engagement and relevance. These findings align with existing research on hybrid models like Visual Bayesian 

Personalized Ranking (VBPR), which has demonstrated that combining visual feature extraction with ranking-based 

personalization significantly improves recommendation effectiveness[33].   

Furthermore, this study reinforces the importance of dataset diversity and external validity in visually-driven 

recommendations. Prior research has emphasized the limitations of using commercially oriented datasets, such as 

ThemeForest, which may introduce biases by overrepresenting certain design styles while underrepresenting niche 

aesthetics[20], [21]. The findings indicate that these biases influence model learning, with stronger performance 

observed for popular minimalist and corporate themes but weaker generalization for artistic or unconventional designs. 

Similar observations have been made in studies on fashion and design-related recommendations, where models trained 

on mainstream styles struggle to generalize to niche user preferences[19]. Addressing this issue, previous research has 

proposed solutions such as synthetic data generation using generative adversarial networks (GANs) and style transfer 

algorithms to enhance dataset diversity[21]. This study supports such approaches by recommending the expansion of 

training data through multiple sources, including community-driven platforms like Dribbble, Behance, and open-source 

repositories[20].   
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Overall, the study builds upon existing literature by providing empirical evidence that combining CNN-based feature 

extraction with advanced ranking models improves visually-aware recommendations. The findings validate the 

superiority of deep architectures like Inception V3 in capturing complex design elements, while also confirming that 

personalized ranking strategies, such as VNPR, enhance user engagement beyond simple aesthetic similarity. Future 

research should further explore hybrid approaches that combine the strengths of DeepStyle and VNPR, integrating 

aesthetic and interaction-based learning to maximize recommendation effectiveness. Additionally, incorporating 

transfer learning with domain-adaptive pretraining could mitigate the risks of negative transfer, ensuring that models 

generalize effectively across diverse visual domains[30]. By addressing these challenges, future studies can further 

refine visually-aware recommender systems, making them more adaptable, scalable, and personalized across various 

industries. 

4.3. Limitations and Observations 

While this study provides valuable insights into the performance of feature extractors and recommender models for 

visually-aware recommendation systems, it has several limitations. A primary constraint is the size and diversity of the 

dataset used. Although the dataset was carefully curated to include a broad range of website themes from ThemeForest, 

its coverage may not fully capture the variability and complexity of real-world website designs. This limitation could 

affect the generalizability of the results, particularly in recommending niche design preferences or uncommon aesthetic 

elements. Expanding the dataset by incorporating themes from multiple sources, such as Behance, Dribbble, 

Awwwards, and open-source repositories, could help address this limitation and provide a more comprehensive 

understanding of user preferences across diverse website design styles. Additionally, synthetic data generation 

techniques, including Generative Adversarial Networks (GANs) and style transfer models, could further enhance 

dataset diversity by creating artificial variations of existing themes. 

Another significant challenge encountered in this study is computational resource constraints. The training of deep 

learning models, particularly Inception V3 and VNPR, required substantial computational power, which may limit their 

applicability in real-world, resource-constrained environments. While the results demonstrate the effectiveness of these 

models, their computational demands could hinder deployment in large-scale commercial systems. To address this, 

future studies could explore model optimization techniques, such as knowledge distillation, quantization, or pruning, 

to create lightweight versions of these models without significantly compromising performance. Additionally, 

leveraging cloud-based training infrastructure or distributed computing could make deep learning-based recommender 

systems more scalable for practical use cases. 

Unexpected trends were observed in the results, particularly in the performance of AlexNet + VNPR and DeepStyle-

based models. Despite AlexNet’s relatively limited feature extraction capabilities, its combination with VNPR yielded 

higher-than-expected recall and F1 scores. This suggests that VNPR’s ranking mechanism effectively compensates for 

weaker feature representations by leveraging user-specific interactions. This finding aligns with prior research 

indicating that personalized ranking strategies can enhance recommendation performance even when feature extraction 

is less robust. Conversely, DeepStyle-based models exhibited lower MAP and NDCG scores, indicating that while they 

capture visual similarity well, they are less effective at ranking recommendations based on user interactions. This 

reinforces the importance of integrating interaction-driven ranking mechanisms, such as those used in VNPR, to 

improve recommendation effectiveness. Further research is needed to analyze the interaction between DeepStyle’s 

CNN-based feature extraction and personalized ranking algorithms, particularly in visually-driven recommendation 

scenarios. 

4.4. Implications for Future Research 

The findings of this study have significant implications for the design and implementation of visually-aware 

recommender systems for website themes. First, the results emphasize the importance of selecting feature extractors 

that can capture complex visual patterns. Advanced architectures such as Inception V3 have demonstrated their ability 

to extract hierarchical and multi-scale features, which are critical for understanding the nuances of website design. This 

insight suggests that future systems should prioritize the integration of cutting-edge CNN architectures or explore 

hybrid models that combine the strengths of multiple extractors. The superiority of VNPR in ranking quality 

underscores the necessity of employing sophisticated ranking methodologies in visually rich domains. Future research 
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could explore novel ranking algorithms incorporating implicit and explicit feedback more effectively or investigate 

hybrid models combining VNPR’s strengths with CF or content-based approaches. Additionally, the role of user 

interaction data in enhancing personalization could be further examined, particularly in dynamic systems where 

preferences evolve. 

Expanding the dataset scope and size is another avenue for future work. Including datasets with diverse website themes, 

cultural aesthetics, or real-time user feedback could improve the system’s robustness and generalizability. Furthermore, 

investigating the applicability of transfer learning with pre-trained models on larger image datasets could enhance the 

feature extraction process, particularly for underrepresented design categories. Finally, practical considerations such 

as computational efficiency and scalability remain critical for real-world deployment. Research into model 

optimization, including pruning or quantization, could make advanced models more accessible for deployment on 

resource-constrained platforms. Similarly, exploring lightweight architectures that balance performance and efficiency 

could broaden the applicability of visually-aware recommender systems to a wider range of use cases. Together, these 

directions provide a roadmap for advancing state-of-the-art image-based recommendations, ensuring that such systems 

remain relevant and impactful in a rapidly evolving digital landscape. 

5. Conclusion 

This study systematically evaluated various feature extractor and recommendation model combinations to optimize the 

accuracy and relevance of visually-based website theme recommendations. The key findings demonstrate that 

combining advanced CNN architectures like Inception V3 with recommendation models such as Visual Neural 

Personalized Ranking (VNPR) yielded the best accuracy and user satisfaction performance. These combinations 

effectively captured complex visual features, providing more personalized and aesthetically relevant recommendations 

than traditional methods like Collaborative Filtering (CF) and Content-Based Filtering (CBF). The integration of 

transfer learning further improved feature extraction, enabling the models to perform well even with limited data and 

reducing the computational load associated with training from scratch. This study significantly advances the 

understanding of visually-aware recommender systems by highlighting the effectiveness of combining deep learning 

models with traditional recommendation algorithms. It contributes to the field by providing a comparative analysis of 

CNN architectures in the context of visual content recommendation. It offers insights into how different model pairings 

can be optimized for visual-based domains. Future research could explore additional CNN architectures, such as 

ResNet or DenseNet, to further improve feature extraction capabilities. Additionally, incorporating user feedback loops 

and dynamic preferences could enhance the adaptability of these systems, making them even more responsive to 

changing user tastes. For practical applications, developers and platforms can implement the findings of this study to 

improve their theme recommendation systems. By utilizing advanced CNNs like Inception V3 and combining them 

with hybrid recommendation models, platforms can offer more personalized, relevant, and engaging website themes. 

Furthermore, adopting transfer learning to fine-tune pre-trained models can reduce the need for extensive labeled 

datasets, making it easier to implement visually-aware recommendation systems even in data-scarce environments. 

This approach has the potential to significantly enhance user satisfaction, engagement, and retention on digital 

platforms that rely on visual content. 
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