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Abstract 

Accurate carbon market price prediction is one of the fundamentals in assessing the risks associated with carbon trading. Related studies on 

carbon price prediction were mainly focused on two major approaches: mathematical and/or machine learning models. Geometric Brownian 

Motion (GBM) is one of the mathematical models that can represent carbon price movements but requires modifying the sample size and the 

number of parameters for compiling the simulation numerically. Moreover, two critical parameters: (μ) mu and (σ) sigma need to be estimated 

to simulate the carbon price movements. In this study, the parameters μ and σ estimation are based on the average return value and standard 

deviation. However, if the carbon price movement is very volatile, we need to recognize its trend and characteristics by estimating the parameters 

precisely until there is no significant change (or stable) patterns. That is very expensive and may be intractable on high-dimensional data with 

less precise prediction. Therefore, we propose a hybrid model for carbon price prediction based on GBM with the parameter estimation using the 

Long Short-Term Memory (LSTM) model. The LSTM model was chosen because it has high accuracy in parameter estimation without losing 

the characteristics of the GBM stochastic model. Furthermore, Value at Risk (VaR) is utilized to measure the risk of carbon price volatility 

predictions. The simulation results showed the proposed model has higher prediction accuracy with a not-too-significant time difference, and the 

model is proven reliable in measuring future risks. 
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1. Introduction  

Climate change occurs due to greenhouse gas (GHG) emissions from human activities in various sectors. Incidents 

such as rising sea levels, extreme global warming, forest fires, floods, and other natural phenomena are increasingly 

occurring worldwide [1]. International efforts to mitigate the effects of climate change rely on global agreements like 

the United Nations Framework Convention on Climate Change, the Kyoto Protocol, and the Paris Agreement [2]. 

Carbon dioxide is a gas with the highest emission composition, often called carbon emissions [3], [4]. Most carbon 

dioxide is produced by industrial and energy sectors [2]. Therefore, companies that emit carbon will be subject to 

sanctions in the form of carbon emission fees. In contrast, companies that succeed in reducing emissions will be given 

incentives, from which transactions called carbon markets are created [4]. Increasing and uncontrolled carbon 

emissions will pose a risk of global warming, so it is necessary to implement environmental policies and regulations 

that support reducing carbon emissions. The environmental policies under Article 2 of the 2015 Paris Agreement aim 

to ensure that financial investments support the reduction of greenhouse gas emissions and promote climate-resilient 

development. Following the Paris Agreement, the government and industry implemented policies, including setting 

emission quotas and incentives. If the permitted emission quota is reduced, it will cause the carbon price to rise. 

Conversely, if the permitted emission quota is increased, it will cause the carbon price to fall. So, emission quotas and 

incentives will influence the carbon price [2]. 

Accurate predictions of carbon market prices are fundamental for assessing the risks associated with carbon financing 

policies [5]. Predictions support investors in managing the risk of carbon price fluctuations, preserving and increasing 
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the value of carbon assets [6]. Understanding carbon pricing trends provides insight into changing corporate and social 

behavior towards environmentally friendly and low-emission practices. Therefore, carbon market price prediction has 

become essential in international energy and climate economics research [7]. Research on carbon price prediction 

includes two main categories: mathematical and statistical models [1], [3], [8], [9], [10] including GBM, Error-Trend-

Seasonal (ETS), and machine learning algorithms [1], [11], [12], [13], [14], [15] including Artificial Neural Network 

(ANN), Least Square Support Vector Machine (LSSVM), LSTM and various ensemble methods. From existing 

machine learning methods, the hybrid method shows that this approach produces competitive performance compared 

to other models in the literature [16].  

In previous studies, GBM can represent carbon price movement patterns [17]. However, GBM requires sample size 

and parameter modification to represent carbon price movement patterns in order to perform numerical simulations. In 

the GBM model, carbon price movements are influenced by two parameters: the parameters μ and σ. These parameters 

μ and σ greatly affect the pattern and movement of carbon prices. To be able to simulate carbon price movements, 

estimates of the parameters μ and σ are needed. So far, the estimates of the parameters μ and σ in the GBM model have 

used the average return value and standard deviation, and this can be done if the carbon price data has a stable pattern 

and the change pattern is not significant, however, if the carbon price movement is very volatile and has a high volatility 

value, a parameter estimation model is needed to recognize patterns and characteristics of carbon price movements 

more precisely [16]. Therefore, we propose measuring carbon price volatility risk based on the results of carbon price 

forecasting using the hybrid LSTM and GBM methods with Monte Carlo simulations. The study was conducted by 

estimating the parameters μ and σ of carbon prices using LSTM, then we estimated carbon prices using the GBM 

method. Furthermore, the most accurate carbon price prediction results are used to predict the risk of carbon price 

volatility using VaR. Tami [18] suggested that further research could explore using LSTM architecture in predicting 

commodity prices. By developing a hybrid model that combines the strengths of LSTM with other models, promising 

results can be achieved.  

From the existing references, it is stated that LSTM has proven to be a method that has superior performance in time 

series forecasting. LSTM has a long-term memory that is more effective because it allows more parameters to be 

learned [5]. LSTM has the advantage of capturing the characteristics of complex nonlinear series relationships from 

various data [19]. LSTM is also consistent with its capacity to extract complex nonlinear correlations from financial 

data. LSTM implies that machine learning (ML) techniques can improve prediction accuracy in various domains [20]. 

In the context of carbon prices, LSTM offers higher accuracy than other methods and provides better stability [21].  

This paper aims to improve the performance of the GBM model in predicting carbon prices. We use a numerical 

approach using the LSTM model, which is effectively and accurately able to estimate the parameters μ and σ in a long-

term pattern. From the results of accurate parameter estimation, we can see an increase in model performance in 

simulating carbon price movement predictions. The most accurate carbon price movement prediction results are used 

to measure the risk of carbon price volatility using the VaR and Conditional Value at Risk (CVaR) methods. The 

benefits of accurate carbon price movement predictions will also improve VaR and CVaR performance in measuring 

carbon price movement risks. 

Carbon trading research has many challenges in determining risk accurately, so it requires a novel method to get good 

prediction results. The novelty of this study is the use of geometric Brownian motion modified with LSTM as an 

estimator parameter to increase the accuracy of measuring carbon price volatility risk. Previously, research has been 

conducted to predict carbon prices using geometric Brownian motion [9], but research using a hybrid geometric 

Brownian motion approach with LSTM to predict carbon price fluctuation risk is still limited. Therefore, we contribute 

to increasing the accuracy of measuring carbon price fluctuation risk. 

2. Methodology  

Figure 1. Research Process illustrates the research process. The data consists of historical data on carbon price, Brent 

oil price, gas price, and coal price. Data has gathered from the Yahoo Finance website. The data consists of the daily 

working days from September 2019 to November 2023. Data preprocessing is done by cleaning, normalizing, and 

transforming data to prevent bias. 
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Figure 1. Research Process 

One of the SDE-based models is GBM. The parameters of GBM are 𝜇 and 𝜎. In estimating GBM parameters, we use 

LSTM based on the forecasts of carbon prices derived from carbon price variables and energy commodity prices. Then, 

we input the estimated parameter into the GBM equation and simulated the prediction of a carbon price with Monte 

Carlo. We used mean absolute percentage error (MAPE) to validate the prediction result and compared the accuracy 

level of prediction results with GBM without LSTM. The result of the prediction utilizes Value at Risk to assess the 

risk associated with carbon trading using risk variables related to carbon price volatility. 

2.1. Geometric Brownian Motion (GBM) Model with Monte Carlo Simulation 

Suppose 𝑃𝑡 denotes the carbon return at time t. The GBM model satisfies the following stochastic differential equation 

(SDE) [17]: 

dPt = μPtdt + σPtdωt (1) 

𝑑𝑃𝑡 is the change in carbon price, 𝜇𝑃𝑡 is the drift parameter, 𝜎𝑃𝑡 is the volatility parameter and 𝑑𝜔𝑡 is the increment of 

the BM. Thus from Eq. (1) 𝜇𝑃𝑡
𝑑𝑡 is the certain component, which controls the trend of the BM trajectory, while 𝜎𝑃𝑡𝑑𝜔𝑡 

is the uncertain component which controls the random noise effect in the trajectory. Alternatively, the SDE (1) can be 

expressed in a discretised form as Eq. (2) 

ΔPt

Pt
= 𝜇𝑃𝑡

Δ𝑡 + 𝜎𝑍√Δ𝑡 (2) 

Δ𝑃𝑡 represents the difference in returns within a brief period t, whereas Z denotes the standard normal random variable. 

Then the Eq. (2) used to predict carbon price using Monte Carlo Simulation.  

Monte Carlo Simulation for GBM is a numerical technique employed to approximate the trajectory of carbon pricing 

over a period [22]. The subsequent instructions outline the necessary procedures for doing a Monte Carlo simulation 

for GBM as follows:  

We calculate the parameters of the GBM model by setting the carbon price (P), standard deviation (σ), average carbon 

price (μ), and time (T). Next, we determine the number of iterations (n) for the Monte Carlo simulation and set the 

initial stock price (P₀) to a predetermined value. Next, we use the GBM formula to model the change in carbon price 

in each iteration with the formulation in Eq. (3). 

Pt = Pt−1 × e
(μ−

σ2

2
)Δt+σ√ΔtZt

 (3) 

In this context, 𝑃𝑡 represents the carbon price at a certain time 𝑡, 𝑃𝑡−1 refers to the carbon price at the previous time, 𝜇 

denotes the average carbon price, 𝜎 represents the standard deviation, 𝛥𝑡 represents the time interval, and 𝑍𝑡 is a random 

variable.  Next, we run this simulation repeatedly according to the number of iterations set and save the carbon price 

from each iteration for further analysis. The visualization results of the carbon price distribution will then be analyzed 

for changes over time, and the simulation results will be improved by performing repeated iterations until the smallest 

MAPE value is reached.  
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The stochastic differential equation model was enhanced by iterating the carbon price across 10, 100, 1000, 10000, 

100000, and 1000,000 paths. The trajectories are optimized by comparing MAPE data to achieve the most accurate 

and best results. A Monte Carlo simulation is used to determine the optimal path by considering small error values.  

2.2. Long Short-Term Memory  

LSTM has the benefit of long-term memory more effectively because it allows more parameters to be learned [5]. 

LSTM can capture the characteristics of complex nonlinear time series relationships from various data [19]. LSTM is 

also consistent with its capacity to extract complex nonlinear correlations from financial data. LSTM implies that ML  

techniques can greatly improve the accuracy of predictions in various domains [20]. 

This study utilizes the LSTM approach to estimate the parameters 𝜇 and 𝜎 of carbon prices. LSTM is a Deep Learning 

network designed for analyzing sequential data. LSTM networks excel at retaining both short-term and long-term 

information within the network [5]. LSTM is composed of cells with input, output, and memory gates. These three 

gates control the information flow. Each cell retains the specified value for a variable period with this capability. LSTM 

cells aggregate to create brain tissue layers. Figure 2. LSTM flowdepicts the fundamental components of LSTM, 

including σg (sigmoid function), tanh (hyperbolic tangent function), ⊗ (multiplication), and addition. 

 

Figure 2. LSTM flow 

The forget gate is the initial gate identified, determining the degree to which information from the previous cell's 

concealed state should be disregarded. This is achieved using a sigmoid function, as shown in Eq. (4). Subsequently, 

the input gate is identified, which is accountable for controlling the amount of fresh information to be stored in the 

present cell state. The input gate utilizes a sigmoid Eq. (5) and introduces a new tanh function, as shown in Eq. (6) and 

Eq. (7). The output gate is shown in Eq. (8), and it determines the new value and the hidden state in Eq. (9) that will 

be the output of the current cell. This is accomplished by using the sigmoid function. The equations within an LSTM 

cell can be expressed formally as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

𝑖𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (6) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (7) 

𝑜𝑡 = 𝜎 (𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (8) 

ℎ𝑡 = 𝑜𝑐 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (9) 

Where ⊗ represent the dot product, ℎ𝑡−1 denotes previous output, 𝐶𝑡−1, 𝐶𝑡, and �̃�𝑡 are previous memory state, current 

state and intermediate state. And then 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 are the added degree value, retained degree value and current degree 

value state, ℎ𝑡 is output data, and 𝑥𝑡 denotes the input time series. These three gates determine what to store, update, 

or forget from the internal memory, generating the hidden representation at each step. The tanh activation function 

ensures that the output of the neurons is in the range [-1,1] to maintain stability during information propagation. The 

model is compiled with the Adam optimizer, which adaptively regulates the learning, with the loss function being MSE 

to minimize the difference between predictions and targets and using the accuracy value as a metric to evaluate the 

model's performance. 
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2.3. Deep Multilayer Perceptron 

Deep multi-layer perceptron (DMLP) is the one of the most network model that can be used to estimate carbon price. 

Previous studies showed that the model has produced high prediction accuracy and a model-fit effect [23]. Several 

types of single models (ARIMA, ANN, LSSVM), hybrids, and variants exist in previous carbon price research in phase 

II [24]. Regarding its predictive ability, the MLP is better than all single models and some hybrid models [23]. Based 

on existing research, we are interested in comparing DMLP with LSTM in making predictions. 

DMLP is a development of conventional MLP. Its neuron architecture consists of an input, hidden, and output layer. 

The difference with MLP is that DMLP has more neuron layers than regular MLP. The DMLP has input components 

in each neuron, including (𝑥), weights (𝑤), biases (b), and output (y) [23]. 

The output of neurons in a neural network is illustrated in Eq. (10). Each neuron with a nonlinear activation function 

generates an output by assembling weighted inputs from neurons in the previous layer. The activation functions often 

used in DMLP include sigmoid, linear, and unit steps [23].  

yi = σ(∑ Wixi + bi)

i

 (10) 

The activation function can take various forms, as listed in Table 1. Model accuracy testing [17]. 

Table 1. Model accuracy testing [17] 

Activation Function Equation 

Unit step 𝑓(𝑧) = {
1𝑧 ≥ 0
0𝑧 < 0

 

Linear 𝑓(𝑧) = 𝑧 

Logistik (sigmoid) 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

DMLP can learn functions that can be linearly separated, as stated in Eq. (10). Figure 3. Input patterns, from left to 
right: a. linear separable, b. nonlinear separable [3]shows an example of a linear function that divides the data into 

two classes. 

 

Figure 3. Input patterns, from left to right: a. linear separable, b. nonlinear separable [3] 

With DMLP, more efficient classification and faster regression performance can be achieved compared to models with 

fewer layers. The DMLP learning process is done through backpropagation, where errors in the output layer neurons 

are also traced back to the neurons in the previous layer. In DMLP, the stochastic gradient descent (SGD) method is 

used for learning optimization (updating weights between layers). Figure 4. Deep Multilayer Perceptron diagram 

illustrates the scheme of the DMLP model, layers, neurons, and weights. 
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Figure 4. Deep Multilayer Perceptron diagram 

DMLP involves input, hidden, and output layers [23]. The input layer receives input from data consisting of carbon 

and energy prices. The input node receives valuable information from the predictor variables. Hidden layers are 

responsible for extracting input data patterns in neural networks. In the hidden layer, each neuron is interconnected, 

allowing the model to learn nonlinear relationships between input and output. The output layer receives information as 

signals from the hidden layer. In this DMLP model, there are several input variables and one output. Each node in the 

output layer calculates the output value based on the weight and bias values obtained from the previous layer. The 

output measures the model's error through the loss function and compares the predicted and target values. The output 

results are used to update the weights and biases to minimize the prediction error. 

2.4. Performance Test 

In this study, we chose performance testing from simulation using MAPE, which is defined in Eq. (11). 

MAPE =
1

n
∑

|ŷi − yi|

yi
∗ 100

n

i=1

 (11) 

where �̂�𝑖 is the predictedted carbon price, 𝑦𝑖 is, the actual carbon price, and n is the amount of data. Table 2. Model 
accuracy testing [17]shows the scale of several accuracy values when simulating using MAPE. The lower the MAPE 

value, the more accurate it is when estimating future predictions [16], [25]. 

Table 2. Model accuracy testing [17] 

MAPE Judgement of forecast accuracy 

≤ 10% Exceptionally precise 

11% 𝑡𝑜 20% Optimistic forecast 

21% 𝑡𝑜 50% A Reasonable forecast 

> 50% A forecast that is not accurate 

2.5. Carbon Trading Risk Measurement 

The dynamic movement of carbon prices causes a relatively high level of volatility, so there is still a suspicion that the 

data is not entirely customarily distributed, so risk measurement uses the historical VaR and CvaR methods. The 

historical simulation method is one method that can be used directly to calculate VaR because it does not require 

assumptions about normality [26]. VaR is usually expressed in a certain period. This value is associated with a level of 

confidence, which is often expressed as a percentage (for example, 95% or 99%). A VaR of 95% means a 5% chance 

that the loss may exceed the estimated value, while a VaR of 99% means a 1% chance that the loss may exceed the 

estimated value. 

The following are the steps in risk measurement [27]. We simulate return values by randomly generating n single asset 

returns with the parameters obtained from step (1) so that an empirical distribution of simulated returns is formed. We 

look for the maximum loss estimate at the confidence level (1 – α), namely as the α-quantile value of the empirical 

distribution of returns obtained in step (2), denoted by R*. We calculate the VaR value at confidence level (1 - ) in a 

time of t days, the historical VaR represent to Eq. (12): 

VaR(1−α)(t) = V0R∗√t (12) 

with 𝑉0 = initial investment funds. R* = α-th quantile value of the return distribution.  
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CVaR calculate losses that exceed the VaR level [13]. The CVaR value can be expressed in Eq. (13) as follows 

CVaR =  𝔼[L|L > VaRα] (13) 

where 𝐿  is price losses, 𝑉𝑎𝑅𝛼 is VaR in confidence 𝛼   

After that we repeat steps (2) to step (4) m times so that it reflects various possible VaR values for a single asset, 

namely 𝑉𝑎𝑅1, 𝑉𝑎𝑅2, . . . , 𝑉𝑎𝑅𝑚. Final step we calculate the average results from step (5) to stabilize the value because 

the VaR value produced by each simulation is different. 

3. Results and Discussion 

In this section, we explain the research results and discussion completely by dividing it into several subsections, 

including data source, preprocessing data, GBM parameter estimation using LSTM, Monte Carlo simulation, and risk 

measurement. 

3.1. Data Source 

The data used is sourced from Yahoo Finance in accordance with research parameters including daily oil price data 

(Crude Oil/CL-F), daily coal price data (MTF-F), daily natural gas price data (Natural Gas/NG-F), and daily carbon 

price (GRN) data. Yahoo Finance site provides financial news, company financial information, and market-related 

information, including potential issues that are factors in price increases or decreases, including carbon prices. Yahoo 

Finance is one of the right choices for research, especially in the financial field, because the data on Yahoo Finance is 

needed for research and for people who invest or trade stocks [28]. We use data from 2019 to 2023 in this research, 

represented in Table 3. Head of Dataset 

Table 3. Head of Dataset 

Date Carbon Price Coal Price Oil Price Gas Price 

9/18/2019 10.13 60.95 63.07 2.64 

9/19/2019 10.13 60.95 63.47 2.54 

9/20/2019 10.615 61.25 64.05 2.53 

… … … … … 

11/7/2023 30.101999 116.3 81.02 3.14 

11/8/2023 30.040001 115.68 80.42 3.13 

We use several variable data in this study, including carbon price data and energy commodity price data (oil, gas, and 

coal). Figure 5. GRN Carbon and Energy Commodity Price. shows a visualization of the data movement. The x-axis 

represents time in days, and the y-axis represents carbon prices and energy commodity prices in USD. Carbon prices 

are marked in blue with the most stable movements. Coal prices are marked red, Brent oil prices are marked in light 

green, and gas prices are marked in blue. Energy commodity prices have very dynamic price movements. 

 
Figure 5. GRN Carbon and Energy Commodity Price 
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3.2. Preprocessing Data 

In data preprocessing, outliers are caused by spikes or drops in energy prices; outliers are identified by visualizing 

carbon data and energy commodities. So, in overcoming outliers, we use data transformation namely all data sets are 

processed with normalization represent in Eq. (14) as follows: 

X =  
xi−xmin

xmax−xmin
  (14) 

Where 𝑥𝑖 is the value of the i-th sample, 𝑥𝑚𝑖𝑛  is the minimum value of the sample, and 𝑥𝑚𝑎𝑥 is the maximum value 

of the sample. Based on the formula above, the data of all prediction indices ranges from 0 to 1. After normalization, 

we set carbon prices and energy commodities as input variables handled by LSTM to estimate parameters [5].  

3.3. GBM Parameter Estimation using LSTM 

The LSTM process of estimating parameters begins with inputting data, which consists of historical carbon data and 

energy commodity prices. Before the input is entered into the LSTM, we must preprocess the data with min-max data 

transformation with a scale of [0,1]. Next, we enter the transformed data into the LSTM model. Then, calculate the 

return value of the carbon price represent in the Eq. (15) as follows: 

rt = ln (
Pt

Pt−1 
)  (15) 

𝑃𝑡 is the current carbon price, and 𝑃𝑡−1 is the previous carbon price 

The LSTM model architecture we built has 12 neurons using the tanh activation function. Furthermore, the data is 

trained with 80% training data and 20% test data, with a batch size of 64 samples and a buffer size 128. Training is 

carried out for 100 epochs, each consisting of 100 steps. The model processes the batch at each step, calculates 

predictions, and updates weights through backpropagation. After all epochs have been passed, the model is ready to 

predict new data based on the temporal patterns learned. 

Next, evaluate the model using a loss function; the loss function used is MSE using the Eq (16): 

MSE =
∑ (ŷi−yi)2 n

i=1

n
  (16) 

�̂�𝑖 predicted value and 𝑦𝑖 actual value 

Furthermore, the means parameter value is obtained from the average value of the carbon price log return prediction, 

and the volatility is obtained from the standard deviation value of the carbon price log return prediction. 

The parameters estimated are the parameters 𝜇𝑣𝑡 which are the drift coefficient (average return over several time 

periods), the drift coefficient on the carbon price parameter is obtained using the Eq. (17). 

𝜇 =
1

𝑛
∑ 𝑅(𝑡𝑖)    𝑛

𝑖=1   (17) 

𝑅(𝑡𝑖) is the return value of the predicted carbon price obtained from LSTM, and 𝜎𝑣𝑡which is the diffusion coefficient 

(standard deviation of return). The coefficient of standard deviation is obtained in the Eq. (18). 

𝑠2 =
1

𝑛−1
∑ (𝑅(𝑡𝑖) − �̅�)2𝑛

𝑡−1   (18) 

Next, the estimated parameter value obtained, the mu (𝜇) are entered into the Geometric Brownian Motion Eq. (19) 

dPt = μPtdt + σPtdωt (19) 

From equation (14), a Monte Carlo simulation is then carried out to find the most optimal path; the simulation uses 

iterations of 10, 100, 1000, 10000, 100000, and 1000000. From each iteration, the most accurate result will be selected. 

3.4. Monte Carlo Simulation 

The subsequent section presents the outcomes of carbon price simulations utilizing Geometric Brownian Motion, 

conducted through iterations of 10, 100, 1000, 10000, 100000, and 1000000. Subsequently, a comparison is made 

between the actual results and the simulation outcomes, followed by a comparison with the average simulation value. 

Figure 6. Results of Carbon Price Model Simulation. represents the prediction of the GRN carbon price movement. In 
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the image caption, the horizontal coordinates represent daily time series, and the vertical coordinates represent the 

carbon price (GRN). The explanation in Figure 6 are as follows: Prediction 1 describes the results for 10 iterations, 

prediction 2 describes the results for 100 iterations, prediction 3 describes the results for 1000 iterations, prediction 4 

describes the results for 10000 iterations, prediction 5 describes the results for 100000 iterations, and prediction 6 

describes the results for one million iterations. 

  

 

Figure 6. Results of Carbon Price Model Simulation 

Simulation results using the Monte Carlo method are used to evaluate model performance. In this context, we compare 

the GBM model with the GBM-LSTM and GBM-DMLP model, as shown in Table 4. Carbon Price Prediction Results 

and MAPE Values   

Table 4. Carbon Price Prediction Results and MAPE Values 

No Number of Iterations GBM (%) Time 

(sec) 

GBM-LSTM 

(%) 

Time 

(sec) 

GBM-DMLP Time(sec) 

1 10 8.35 1.021 5.42 55.439 6.65 9.221 

2 100 7.18 1.327 4.63 58.874 5.32 7.270 

3 1000 6.72 4.243 4.29 65.632 4.60 10.124 

4 10000 5.63 27.453 4.09 92.340 4.31 42.335 

5 100000 4.96 300.321 3.66 363.203 4.11 350.465 

6 1000000 4.77 3403.352 3.14 3482.013 3.81 3443.674 
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From the simulation results in Table 4. Carbon Price Prediction Results and MAPE Values, the more trajectories there 

are, the better the model performance will be. This is indicated by a decrease in the error value on each trajectory. For 

the same input variables, namely carbon price and energy commodity price, the MAPE value in the GBM-LSTM model 

is the smallest compared to the DMLP-LSTM and GBM models. This means that the GBM-LSTM prediction is better 

than the DMLP-LSTM and regular LSTM because LSTM is better able to recognize nonlinear carbon price time series. 

Then, LSTM can memorize crucial patterns in the long term, resulting in higher accuracy. 

Regarding the iteration time in making predictions, the GBM-LSTM hybrid method has the longest time compared to 

the GBM and GBM-DMLP methods because the LSTM architecture has the most complex components, especially in 

remembering long-term memory and forgetting irrelevant information in memory. Thus, although the GBM-LSTM 

model requires a longer time, this extended time is still comparable to the accuracy value of the other models. 

Monte Carlo simulations also depend heavily on the magnitude of the path value. The greater the path value, the more 

simulations are carried out. From the number of simulations, the slightest error value is obtained. The relatively long 

computation time is still comparable to the accuracy value obtained at high iterations (where the best performance is 

obtained), and the difference in computation time of the three algorithms is not too significant. The long computation 

time is used for the training process, while the training process is not carried out continuously. When applied, the 

testing process time for the three algorithms does not take long.  

The next step is to measure the risk of loss due to carbon price fluctuations. Dynamic carbon price movements cause 

relatively high volatility, so there is still a suspicion that the data is only partially distributed risk measurement using 

the historical VaR and CVaR methods. The Historical Simulation method is one method that can be used directly to 

calculate VaR because this method does not require normality assumptions [26]. Then, we present the results of the 

risk measurement in Table 5. The result of risk measurement. 

Table 5. The result of risk measurement 

No. Methods Historical VaR (%) CVaR (%) 

  𝛼 = 0.05 𝛼 = 0.01 𝛼 =0.05 𝛼 =0.01 

1. GBM 3.99 6.83 5.44 6.22 

2. GBM-LSTM 2.34 3.24 2.93 3.77 

3. GBM-DMLP 1.80 2.47 2.23 2.90 

Based on Table 5. The result of risk measurement, for the historical simulation method, it can be interpreted that, with 

an initial investment of USD 100 for carbon prices at a 95% confidence level, the highest risk of loss is the GBM 

method with the amount of loss that investors may bear not exceeding USD 3.99. Still, in the historical simulation with 

a 99% confidence level, the value of the loss that investors may bear will not exceed USD 6.83. The lowest predicted 

value of VaR or CVaR is in the GBM-DMLP method, while the highest risk value is in the GBM method. The risk of 

loss at 𝛼 =  0.01 shows a tendency for a higher value than the risk of loss with 𝛼 =  0.05, indicating that the higher 

the confidence level, the higher the loss value. The comparison between historical VaR and CVaR shows that the value 

of CVaR is higher than that because CVaR calculates the average value of extreme losses. From the results of the risk 

measurement after obtaining the VaR and CVaR values, we tested the validity or accuracy of VaR using the backtesting 

method. Table 6 presents the results of backtesting the VaR and CVaR risk measurements. 

Table 6. The result of backtesting VaR 

No. Methods 

Number of Failure (%) 

Historical VaR 

𝜶 = 𝟎. 𝟎𝟓 

Historical VaR 

𝜶 =0.01 

CVaR 

𝜶=0.05 

CVaR 

𝜶=0.01 

1. GBM 4.07 1.63 1.63 0.81 

2. GBM-LSTM 4.79 1.20 1.20 0.03 

3. GBM-DMLP 6.59 1.20 1.80 1.20 

Based on Table 6. The result of backtesting VaR, historical risk prediction with α=0.05, the lowest failure rate is 

obtained in the GBM model, while the highest is in GBM-DMLP. Furthermore, in historical risk prediction with 𝛼 =



Journal of Applied Data Sciences 

Vol. 6, No. 2, May 2025, pp. 845-857 

ISSN 2723-6471 

855 

 

 

 

0.01, the lowest failure rate is in the GBM-LSTM method, while the highest is in the GBM method. Furthermore, in 

CVaR measurement, the highest failure rate is in the GBM-DMLP method, while the lowest is in the GBM-LSTM 

method. The results of risk measurement with CVaR show better results than historical VaR, which can be proven in 

Table 4, where the failure rate in CVaR shows a smaller value than the failure rate in historical VaR. The difference in 

VaR and CVaR measurements proves that the GBM-LSTM model is reliable in estimating parameters. The proper 

parameters will affect the results of carbon price prediction and volatility risk prediction. In this risk forecast, the time 

horizon used is short-term because it uses daily carbon data and energy commodity data. Its function is to determine 

the risk characteristics of the carbon market, especially in Europe, and the magnitude of the risk caused by carbon price 

fluctuations. 

4. Conclusion 

This paper proposes a hybrid GBM-LSTM model to predict carbon price volatility risk. The main processes include 

data preprocessing, parameter estimation, carbon price estimation, and risk measurement. Simulation results indicate 

that the GBM-LSTM model is better than the DMLP-GBM and regular GBM. GBM-LSTM significantly reduces the 

error at each iteration. The decrease in error also establishes that combining GBM and LSTM improves the model's 

ability to recognize more complex carbon price data patterns, especially nonlinear ones. The limitation of relatively 

long computation time is still comparable to the accuracy value obtained at high iterations (where the best performance 

is obtained), and the difference in computation time of the three algorithms is not too significant. The difference in 

VaR measurements between predicted and actual data proves that the GBM-LSTM model is reliable in estimating 

parameters and, with the correct parameters, will affect the results of carbon price prediction and risk prediction of 

carbon price volatility. The research of the hybrid LSTM method with GBM is a good start in exploring the 

characteristics of carbon price fluctuations at a particular time. Integration with a more sophisticated neural network 

architecture will increase the accuracy and function value of optimizing carbon trading risk. In the following research, 

it can be developed further by developing a more optimal deep learning model for measuring risk. 
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