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Abstract 

This investigation seeks to formulate a Decision Support Model (DSM) aimed at identifying the most suitable fuel for boiler systems utilized in 

industrial contexts, encompassing three distinct fuel categories: natural gas, industrial diesel oil, and coal. The assessment is predicated on four 

fundamental criteria: cost, calorific value, safety, and emissions. Employing a synergistic methodology that combines Analytic Hierarchy Process 

(AHP) and Fuzzy Logic, AHP allocates weights to each criterion (cost: 0.503, calorific value: 0.273, safety: 0.145, emissions: 0.079). The Fuzzy 

Logic approach is utilized to effectively address uncertainty and process subjective assessments. The findings indicate that cost constitutes the 

paramount determinant, exhibiting the highest weight, succeeded by calorific value, safety, and emissions. In accordance with these weighted 

criteria, the fuels are ordered as follows: coal (0.794), natural gas (0.653), and industrial diesel oil (0.456). These results underscore that cost 

remains the predominant factor in fuel selection for industrial boilers, whilst safety and environmental ramifications concurrently exert significant 

influence. The originality of this inquiry is manifested in its implementation of an all-encompassing DSM for fuel selection, marking a pioneering 

effort within this domain, which integrates both AHP and Fuzzy Logic to furnish a versatile and resilient decision-making framework. The 

implications of this research are substantial, as it offers a transparent and systematic approach for fuel selection in industrial environments, 

providing valuable insights into the optimization of energy resources while taking into account economic, environmental, and safety 

considerations. Subsequent investigations could further examine the incorporation of renewable energy sources and the ramifications of 

advancing environmental policies on fuel selection. 
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1. Introduction  

Boilers are essential components in various industrial sectors that rely on steam as a critical element in their production 

processes, including manufacturing, energy, and chemical industries. As a primary source of thermal energy, boilers 

convert the chemical energy of fuels into heat, which is then used to raise water to steam [1]. The selection of an 

appropriate fuel is crucial not only for optimizing operational efficiency but also for controlling costs, ensuring safety, 

and minimizing the environmental impact of boiler systems [2]. Fossil fuels, such as natural gas, diesel, and coal, are 

commonly used in industrial boiler applications due to their high energy efficiency. However, the combustion of these 

fuels leads to the emission of significant quantities of greenhouse gases (GHGs), including carbon dioxide (CO₂), sulfur 

dioxide (SO₂), and nitrogen oxides (NOx), which contribute to global warming and air pollution [3].  

Traditionally, fuel selection decisions for boiler systems have been made primarily based on two factors: fuel 

availability and cost [4]. However, as global awareness of environmental concerns grows, there is an increasing 

emphasis on incorporating other important criteria, such as carbon emissions, fuel safety, and calorific value, into the 

decision-making process [5]. Selecting the right fuel can lead to cost reductions, as well as contribute to sustainability 

efforts by reducing the environmental impact of energy production. This highlights the need for a more systematic 

approach to fuel selection—one that integrates both economic and environmental considerations [6].  

A DSM offers a promising solution to address these complex multi-criteria decision-making problem [7]. The AHP is 

a well-established multi-criteria decision-making method that organizes complex, unstructured decisions into a simpler 

hierarchical structure [8]. The AHP process typically involves three main stages: hierarchy creation, pairwise 

comparison, and decision synthesis. In the first stage, decision objectives, criteria, and alternatives are organized 
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hierarchically. In the second stage, pairwise comparisons are conducted using numerical ratings (values ranging from 

1 to 9), which reflect the relative importance of each criterion. These comparisons are inherently subjective, as they 

are based on the expert’s judgment, yet they are crucial for determining the relative weights of the decision criteria. 

The final stage involves synthesizing these comparisons to generate a ranking of the alternatives [9]. 

In this context, Fuzzy Logic is used to manage the uncertainty and subjectivity that arises in evaluating fuel selection 

criteria. Not all decision parameters can be assessed with precise numeric values, as many involve vague or imprecise 

information [10]. Fuzzy Logic allows for the representation of such criteria using membership values that range from 

0 to 1. This approach can handle the inherent uncertainty in evaluating factors like safety and environmental impact. 

The Fuzzy Logic process consists of three stages: fuzzification, inference, and defuzzification. In the fuzzification 

stage, crisp numerical inputs are converted into fuzzy values representing degrees of membership in fuzzy sets. In the 

inference stage, IF-THEN rules are applied to relate fuzzy inputs to fuzzy outputs. Finally, in the defuzzification stage, 

the fuzzy results are converted back into precise numerical values using methods such as the Centroid technique, which 

calculates the center of gravity of the fuzzy set [11]. 

This study aims to develop a comprehensive DSM that can assist in recommending the optimal fuel for industrial 

boilers by evaluating and comparing fossil fuels—such as natural gas, diesel, and coal—based on both economic and 

environmental parameters [12]. By integrating AHP and Fuzzy Logic, this model provides a flexible and robust 

approach to fuel selection that considers both cost-efficiency and environmental sustainability [13]. The application of 

this DSM model is expected to offer valuable insights for industries seeking to optimize their fuel selection process, 

contributing to both economic savings and environmental goals [14]. Furthermore, the integration of these decision-

making techniques aligns with current trends toward sustainable industrial practices and carbon footprint reduction 

[15]. 

2. Method 

2.1. DSM 

This study develops a DSM to select the optimal fuel in a boiler engine, using a combination of AHP and Fuzzy Logic 

approaches [16]. This section describes in detail the research methods applied, including data collection, model design, 

and evaluation stages, as shown in figure 1. 
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Figure 1. DSM Method 

The investigation begins with identifying the case, where current methods for determining fuel in boiler systems are 

examined. Many companies still rely on manual methods for choosing fuel, and sometimes there is no organized system 

or model in place. To understand these methods, real data is collected directly from industries using boilers through 

site visits, discussions with boiler operators, and meetings with industry experts [17]. The next step, decision analysis, 

involves evaluating different fuel options based on the set criteria. Key stakeholders involved in the decision-making 

process are identified, and a decision hierarchy is created using the AHP, which includes main objectives, criteria, sub-

criteria, and fuel options [18]. After this, during the parameterization stage, the relevant parameters for fuel selection 

are outlined based on the results of the decision analysis. These parameters—cost, calorific value, safety, and 

emissions—are validated through relevant research and expert interviews. The parameters are then combined to create 

a basis for building a model [19]. In the data collection phase, necessary data for each identified parameter is gathered 

from both secondary sources (like academic literature and industry reports) and primary sources (through surveys and 

interviews). When data limitations arise, data construction techniques are used to generate needed data for later 

calculations [20]. Finally, in the DSM construction phase, the gathered data is used to create a complete DSM for fuel 

selection in boilers. The model combines AHP and Fuzzy Logic to address multi-criteria decision-making, where AHP 

assigns weights to criteria, and Fuzzy Logic manages uncertainty and subjectivity in assessment. This combination of 

methods supports a flexible, clear, and realistic decision-making process for fuel selection in industrial boiler systems 

[21]. 

The process of integrating AHP and Fuzzy Logic for selecting the optimal fuel for industrial boilers involves several 

stages, focusing on key factors such as cost, calorific value, safety, and emissions [22]. The first step is identifying the 

main criteria based on a review of literature and expert opinions. These criteria are then analyzed to determine their 

importance, with AHP being used to assign weights to each factor [23]. AHP creates a hierarchical structure to compare 

the criteria and determine their relative importance through pairwise comparisons. This results in a set of weights that 

guide the decision-making process. However, fuel selection often involves uncertainty, especially when evaluating 

subjective factors like safety or emissions [24]. To address this, Fuzzy Logic is applied. It allows the evaluation of each 
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criterion using fuzzy values (e.g., "Not Tight" to "Tight" for safety), which better reflects the complexities of real-

world decisions. These fuzzy values are then converted into clear, actionable numbers through defuzzification [25]. 

Finally, the results from both AHP and Fuzzy Logic are combined. The fuzzy evaluations for each fuel are multiplied 

by the AHP-derived weights, resulting in an overall score for each fuel. This integrated approach provides a more 

accurate and comprehensive fuel selection process, accounting for both the relative importance of each criterion and 

the uncertainties in the evaluation [26]. 

2.2. Decision Proposing 

In this phase, the DSM is used to assess different fuel selection scenarios, based on the criteria and parameters set 

earlier in the study [27]. The model is meant to handle various fuel types—like natural gas, diesel, and coal—while 

factoring in a range of important evaluation aspects, such as cost, energy content, safety, and emissions [28]. Each 

scenario is tested to see how different fuel mixes satisfy the established criteria under diverse operational situations. 

The model assigns a weighted score to each fuel option, incorporating both subjective evaluations (from fuzzy logic) 

and quantitative analyses (from the AHP model). This enables a thorough comparison among the fuels, providing 

insights into their relative effectiveness based on the priorities defined by the decision-maker. The outcomes of each 

scenario are examined to find the most appropriate fuel choice for specific conditions. These results are shared to assist 

decision-makers in understanding the trade-offs between different fuels, especially concerning cost efficiency, 

environmental effects, and safety [10]. Additionally, the model can be modified to investigate the impacts of changing 

parameters, like adjusting the weights of each criterion or trying out various fuel combinations. Ultimately, this phase 

seeks to deliver a clear, data-informed recommendation on the best fuel selection, customized to the specific 

requirements and limitations of the industry or company involved. The suggested decision acts as a framework for 

practical execution, ensuring that the chosen fuel aligns with both economic and environmental objectives [29]. 

2.3. Model Verifying and Validating 

The final stage of this research involves verification and validation of the model. These steps are essential to ensure 

that the model is continually improved [30]. Verification checks the accuracy of the model based on the theoretical 

concepts used, while validation compares the model's data values with real-world values. The process is iterative, 

meaning it will be repeated until the model reaches a high level of accuracy. For model validation, Focus Group 

Discussions (FGD) are conducted, where a set of structured questions is asked to relevant stakeholders, including 

experts and practitioners. The goal is to gather feedback on the model's results and its alignment with real-world 

operations. The feedback from the FGD is analyzed and used to refine the model, ensuring its validity and practical 

applicability [31]. These verification and validation steps are repeated to improve the model’s accuracy and ensure it 

provides the best fuel selection solution for boiler systems [32]. 

3. Results and Discussion 

In this section, the results obtained from using the DSM, based on the AHP and Fuzzy Logic methods for choosing 

fuels in boiler systems, are described. The evaluation focused on three different fuel sources—natural gas, diesel, and 

coal—while considering four main criteria: cost, calorific value, safety, and emissions. These criteria were carefully 

chosen through detailed interviews with industry professionals, highlighting their importance to operational 

effectiveness and environmental impact. Cost was prioritized because of its direct link to economic choices in various 

industries, especially in manufacturing, where cost reductions enable more competitive product pricing. Calorific value 

was chosen for its crucial impact on combustion efficiency, while safety and emissions were included to reduce risks 

and support environmental goals. Although fuel availability is a crucial factor in the fuel selection process, it was left 

out of this study due to a lack of reliable data. The availability of fuel resources, particularly concerning local supply 

chains and logistics, can greatly influence decisions about fuel selection. However, this data was found to be 

inaccessible or unmeasurable during this study. Additionally, despite the growing importance of renewable energy 

sources in industrial operations, they were not included in this research. This omission is mainly due to the study's 

focus on assessing traditional fossil fuels (natural gas, diesel, and coal) for existing boiler systems in sectors where 

renewable options have not yet been widely adopted or integrated. Future studies may explore the inclusion of 

renewable energy sources as part of a broader fuel selection strategy, especially as industries move towards sustainable 

energy practices.  
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3.1. Data Collecting 

Based on the literature and interviews with industry experts, four main criteria were identified as the factors that most 

influence the selection of boiler fuel. These criteria are shown in table 1. 

Table 1. Main Criteria 

Criteria Description 

Cost Measures the cost of using fuel, expressed in USD/mmBtu. 

Heating Value Measures the amount of energy produced by a fuel, expressed in Btu/lb. 

Safety Measures the level of safety associated with the use of a fuel, such as fire risk and health impacts. 

Emissions 
Measures the amount of carbon dioxide (CO2) emissions produced by burning a fuel, expressed in 

million metric tons. 

Several criteria for boiler fuel will be included in the DSMs. The parameters proposed in this study are shown in table 

2. 

Table 2. Parameter Fuel 

Parameter Fuel 
Cost 

(USD/mmBtu) 

Heating Value  

(Btu/lb) 
Safety 

Emission  

(Million metric tons) 

Natural Gas 7.110 21,830 Strict 52.910 

Industrial Diesel Oil (IDO) 20.230 18,900 Strict Enough 74.140 

Coal 2.210 14,000 Moderate 95.990 

3.2. Fuzzy Logic 

An influence diagram illustrates the relationships between the parameters or variables used and the functions involved 

in decision-making, as shown in figure 2. The decisions made or taken should also have an impact on the areas that 

will be optimized (as the objectives of the decision). This diagram visually represents how different factors—such as 

cost, calorific value, safety, and emissions—affect the final decision, providing a clearer understanding of how each 

element influences the outcome. By mapping out these relationships, the influence diagram helps to structure the 

decision process and highlights the critical aspects that need to be considered to achieve the desired optimization in 

fuel selection for boiler systems as shown in figure 2. 

 

Figure 2. Influence Diagram 

In this study, we define five different safety categories: "Not Strict", "Not Strict Enough", "Medium", "Fairly Strict", 

and "Strict". Each category will have a membership function that describes the degree to which an input value (safety) 

belongs to that category. The input range for safety is defined between 0 and 5, where 0 represents the lowest level of 

safety (Not Strict) and 5 represents the highest level of safety (Strict). The fuzzy membership functions for each 

category will be designed to reflect the degree of safety based on expert judgments and industry standards. These 

functions allow for a more nuanced assessment of safety in the fuel selection process, accommodating the inherent 
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subjectivity and uncertainty in evaluating safety conditions. The use of fuzzy logic in this context provides a more 

flexible and realistic approach to decision-making, as it enables the handling of imprecise or vague data as shown in 

figure 3.  

 

Figure 3. Membership Function Parameter Safety 

Each parameter has five membership categories, meaning there are five possible categories for each parameter. 

Therefore, the total number of rule combinations for four input parameters with five categories each is 5 x 5 x 5 x 5 = 

625 possible rule combinations. To formulate all the fuzzy rules, we will use a systematic approach based on the 

membership categories of each parameter. This study will develop a fuzzy logic system that will assess the safety of a 

fuel based on four parameters: Health Hazard, Fire Hazard, Danger of Reactivity, and Environmental Hazard. The 

output of this system will be the safety level, which is categorized into: "Not Strict," "Not Sufficiently Strict," 

"Medium," "Fairly Strict," and "Strict." The values of the sub-parameters, obtained through expert discussions, will 

serve as inputs for the fuzzification process. By using fuzzy logic, the model can effectively handle the uncertainties 

and subjectivity in evaluating the safety of fuels, providing a more flexible and realistic decision-making tool for fuel 

selection, as shown in table 3.  

Table 3. Sub-Parameter Safety 

Sub-Parameter Safety Health Hazard Fire Hazard Danger of Reactivity Environmental Hazard 

Natural Gas 2 4 5 3 

Industrial Diesel Oil (IDO) 3 2 2 2 

Coal 1 3 0 4 

For the fuzzy inference process, we use the Min (minimum) method to combine membership results based on the 

relevant rules. For example, if Health Hazard is "Medium," Fire Hazard is "Fairly Strict," Danger of Reactivity is 

"Strict," and Environmental Hazard is "Fairly Strict," the resulting safety classification could be either "Fairly Strict" 

or "Strict." The defuzzification process is then used to obtain a crisp value from the fuzzy output. In this case, the 

Centroid method is applied, which calculates the center of gravity of the area under the membership function curve. 

Based on this fuzzy calculation, the crisp output value for the Safety of Natural Gas is 4, which falls into the "Strict" 

safety category. This value is then used to make a clear decision about the safety level of Natural Gas in the context of 

fuel selection, as shown in table 4. 
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Table 4. Sub-Parameter Safety Natural Gas 

Sub-Parameter Input Value Category 

Health Hazard 2 Medium 

Fire Hazard 4 Fairly Strict 

Danger of Reactivity 5 Strict 

Environmental Hazard 3 Fairly Strict 

If Health Hazard = "Fairly Strict," Fire Hazard = "Medium," Danger of Reactivity = " Medium," and Environmental 

Hazard = " Medium," then the Safety classification could be either "Fairly Strict" or " Medium." Based on this fuzzy 

calculation, the crisp output value for the Safety of Industrial Diesel Oil (IDO) is 3, which falls into the "Fairly Strict" 

or " Medium " category. This value is used to assess the safety level of Industrial Diesel Oil in the fuel selection process, 

as shown in table 5. 

Table 5. Sub-Parameter Safety Industrial Diesel Oil 

Sub-Parameter Input Value Category 

Health Hazard 3 Fairly Strict 

Fire Hazard 2 Medium 

Danger of Reactivity 2 Medium 

Environmental Hazard 2 Medium 

If Health Hazard = "Not Strict Enough," Fire Hazard = "Medium," Danger of Reactivity = "Not Strict," and 

Environmental Hazard = "Fairly Strict," then the Safety classification could be either "Not Strict Enough" or "Fairly 

Strict." Based on this fuzzy calculation, the crisp output value for Safety in Coal is 2, which falls into the " Medium" 

category. This value is used to assess the safety level of coal in the fuel selection process, as shown in table 6. 

Table 6. Sub-Parameter Safety Coal 

Sub-Parameter Input Value Category 

Health Hazard 1 Not Strict Enough 

Fire Hazard 2 Medium 

Danger of Reactivity 0 Not Strict 

Environmental Hazard 4 Fairly Strict 

After completing all the stages of the fuzzy process, crisp values for each fuel alternative were obtained as follows: 

Natural Gas = 4, Industrial Diesel Oil = 3, and Coal = 2. These crisp values represent the final evaluation of each fuel 

alternative after applying the fuzzy logic process, where each alternative has been assessed based on the selected criteria 

(cost, calorific value, safety, and emissions) and their respective fuzzy membership functions. These crisp values 

provide a clearer and more actionable result, which can be used in further analysis or decision-making regarding the 

optimal fuel selection for boiler systems. 

3.3. AHP Criteria Weighting 

Each criterion is compared in pairs to assess its relative importance to each other. This decision-making is done through 

a pairwise comparison matrix, where each element of the matrix represents the degree of preference of one criterion 

over another. The following is a matrix of the results of the pairwise comparison, as shown in table 7. 
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Table 7.  Pairwise Comparison Matrix 

Criteria Cost Heating Value Safety Emission 

Cost 1 3 4 4 

Heating Value 1/3 1 3 4 

Safety 1/4 1/3 1 3 

Emissions 1/4 1/4 1/3 1 

The criteria weighting in this research was carried out by interviewing experts and professionals with experience in the 

manufacturing sector, especially those working in boiler management and fuel selection. This weighting is determined 

by the practical importance of each criterion to industrial activities, along with the priorities seen in the field, ensuring 

that the choices made align with the actual practices of the manufacturing industry. Cost was given the highest 

importance since operational costs are a crucial element in assessing company performance and form a key part of the 

Key Performance Indicators (KPIs) utilized in various industries. Efficiency in operational costs is vital for staying 

competitive, especially in the manufacturing sector, which typically functions on narrow profit margins. Therefore, 

cost is prioritized in fuel selection. Heating Value was also given considerable importance, as fuels with higher calorific 

value perform better in combustion and can fulfill energy requirements using less fuel. In practical terms, achieving 

optimal combustion efficiency is key to reducing fuel usage and enhancing the overall effectiveness of the boiler 

system. Safety and Emissions received lower importance than cost and heating value, though both are still significant 

in fuel selection. Safety and emissions are deemed satisfactory as long as they comply with the standards set by the 

company and government regulations. In numerous manufacturing sectors, as long as safety and emissions standards 

adhere to the relevant regulations, they are not viewed as the primary factors in fuel selection. Thus, the weighting 

represents the priorities in the manufacturing sector, as established through discussions with industry professionals. 

This offers a strong and credible foundation for the methodology applied in the study, improving transparency in the 

decision-making process. 

In this matrix, for each column in the matrix, calculate the total. Divide each element in the column by the total of that 

column to normalize the values in the matrix. Calculate the total of each column: 

Cost Column   : 1+1/3+1/4+1/4  = 1.833 (1) 

Heating Value Column  : 3+1+1/3+1/4 = 4.583 (2) 

Safety Column   : 4+3+1+1/3  = 8.333 (3) 

Emissions Column  : 4+4+3+1  = 12.000 (4) 

Then, divide each element in the column by the total of that column to get the normalized value. The results can be 

seen in the following table 8. 

Table 8. Normalized Value 

Criteria Cost Heating Value Safety Emission 

Cost 0,545 0,655 0,480 0,333 

Heating Value 0,182 0,218 0,360 0,333 

Safety 0,136 0,073 0,120 0,250 

Emissions 0,136 0,055 0,040 0,083 

From the pairwise comparison matrix, the eigenvector calculation is then carried out to determine the priority weight 

of each criterion. The result is a weight that shows how much influence each criterion has on the final decision, as 

shown in table 9. 
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Table 9. Priority Weight 

Criteria Average 

Cost 0,503 

Heating Value 0,273 

Safety 0,145 

Emissions 0,079 

One of the advantages of AHP is its ability to check the consistency of paired comparison assessments. Consistency 

Index (CI) and Consistency Ratio (CR) are calculated to ensure that the assessments made do not contain high 

inconsistencies. Therefore, the calculation of the Index and CR is carried out with the following stages: 

Cost  : 1×0.503+3×0.273+4×0.145+4×0.079   = 2.217 (5) 

Heating Value : 1/3×0.503+1×0.273+3×0.145+4×0.079                 = 1.190 (6) 

Safety  : 1/4×0.503+1/3×0.273+1×0.145+3×0.079  = 0.597 (7) 

Emissions : 1/4×0.503+1/4×0.273+1/3×0.145+1×0.079  = 0.321 (8) 

Then, divide each of the above results by their respective priority weights: 

Cost  : 2.217 / 0.503 ≈ 4.40 (9) 

Heating Value : 1.190 / 0.273 ≈ 4.35 (10) 

Safety  : 0.597 / 0.145 ≈ 4.12 (11) 

Emission : 0.321 / 0.079 ≈ 4.08 (12) 

Next is to calculate the maximum lambda by calculating the average of the results above: 

λmax =
4.40 + 4.35 + 4.12 + 4.08

4
≈

16.96

4
 ≈ 4.242 (13) 

Then calculate the CI using the formula: 

CI =
λ max − 𝑛

𝑛−1
  (14) 

CI =
4.242 − 4 

4 − 1
≈

0.242

3
 ≈ 0.0807 (15) 

Finally, calculate the CR using the Random Index (RI) for the 4 criteria, which is 0.9. So: 

CR =
CI 

𝑅𝐼
≈

0.0807

0.9
 ≈ 0.0897  (16) 

Generally, CR should be less than 0.1 to be considered consistent. CR: 0.0897. This shows that the assessment is 

consistent, so the calculated priority weights are reliable.  

3.4. Evaluation of Alternative Fuels 

After the priority weights of the criteria are obtained, the next step is to evaluate the fuel alternatives using Fuzzy 

Logic. Fuzzy inputs are taken from the AHP weight results, and three fuel alternatives (natural gas, diesel, coal) are 

evaluated based on the existing criteria. Before using the data for evaluation, each criterion is normalized to allow for 

fair comparison. The following are the results of data normalization, as shown in table 10: 
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Table 10. Data Normalization 

Fuel Cost Heating Value Safety Emission 

Natural Gas 0.311 1.000 1.000 1.000 

Industrial Diesel Oil (IDO) 0.109 0.866 0.750 0.714 

Coal 1.000 0.641 0.500 0.551 

After normalization, fuzzy evaluation is performed to calculate the weighted value of each fuel alternative. Based on 

the fuzzy rules and priority weights of AHP, the following are the final assessment results, as shown in table 11: 

Table 11. Final Assessment 

Fuel Weighted Value 

Natural Gas 0.653 

Industrial Diesel Oil (IDO) 0.456 

Coal 0.794 

From the above results, coal has the highest weighted value (0.794), followed by natural gas (0.653), and diesel (0.456). 

Coal excels mainly because it has a much lower cost compared to other fuels. However, natural gas scores the highest 

in the safety and emission criteria. 

3.5. Simulation and Prototype Testing 

At At this point, the prototype of the DSM is being tested with simulations to verify its effectiveness in real-life 

situations. The goal of this simulation is to assess how well the model can choose the optimal fuel for the boiler engine 

based on specific criteria and weights. The DSM's prototype is created using a mix of the AHP and Fuzzy Logic 

techniques. AHP helps in assigning weights to the criteria, while Fuzzy Logic is used to manage uncertainty in 

evaluating those criteria. The prototype is developed on Google Colab, utilizing the Python programming language. 

The pseudocode resulting from this prototype’s development is shown in figure 4: 

 

 

 

 

 

 

Figure 4. Pseudocode Script 

From these results, coal is the most optimal fuel choice overall, with a value of 0.780 in the simulation. Natural Gas is 

in second place with a value of 0.624, while IDO has a value of 0.435. Coal excels mainly because of its very low cost, 

although it has disadvantages in terms of calories and safety. However, Coal also has advantages in terms of emissions, 

which makes it more environmentally friendly. 

3.6. Model Verification and Validation 

In this section, model validation is carried out by comparing the results of data processing obtained through two 

different approaches, namely simulation and prototyping using Google Colab and manual data processing using 

Microsoft Excel. This validation process is important to ensure that the developed model has an adequate level of 

accuracy and consistency in providing accurate and reliable results. The results of the comparison of the two approaches 

can be seen in the following table 12. 

 

START 

1. Install and import the library 

2. Define input variables 

3. Define output variables 

4. Define membership functions for input and output. 

5. Define fuzzy rules 

6. Create a fuzzy control system with defined rules. 

7. Initialize the fuzzy control simulation. 

8. Define fuel data for each fuel 

END 
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Table 12. Verification Model Comparison 

Fuel 
Comparison 

Manual Simulation 

Natural Gas 0.653 0.653 

Industrial Diesel Oil (IDO) 0.456 0.456 

Coal 0.794 0.794 

In the table above, it can be seen that the consistency between manual calculations and simulations shows that both 

methods provide similar results in the context of optimal fuel selection. It can be seen from the similarity of the 

preference order confirming that the developed model has successfully considered significant factors consistently, 

starting from Coal fuel, then Natural Gas, and finally IDO. 

In this section, the model validation is carried out by comparing the processed data results obtained through the model 

with the actual data encountered in the field. The field data consists of monthly fuel consumption data for the boiler 

system from 2013 to 2023. After obtaining the actual data, the same data processing method, namely AHP Fuzzy, was 

applied for analysis. This validation process is essential to ensure that the developed model has an adequate level of 

accuracy and consistency in providing accurate and reliable results. The comparison between the actual data and the 

prediction results showed that out of 132 test data points, the model successfully predicted 116 data points correctly 

and mis predicted 16. Therefore, the model’s accuracy rate is 87.88%, indicating that the developed model is valid and 

reliable, as shown in table 13. 

Table 13. Validation Model with Historical Data 

Fuel/ Ranking 
Prediction Actual 

1 2 3 1 2 3 

Natural Gas 0 132 0 16 116 0 

Industrial Diesel Oil (IDO) 0 0 132 0 0 132 

Coal 132 0 0 116 16 0 

To measure the accuracy of the model's predictions compared to the actual data, two indicators were used: Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE). The MAE value is 0.0526, showing the average 

difference between the predicted values and actual data. The RMSE value is 0.0640, which reflects the average squared 

difference between the predicted and actual values. Both metrics suggest that the model's predictions are close to the 

actual data, confirming that the model is reliable and accurate for decision-making. 

4. Conclusion 

This study aims to create a DSM based on the AHP and Fuzzy Logic methods to determine the best fuel for a boiler 

engine, considering four main criteria: cost, calorific value, safety, and emissions. The findings indicate that while coal 

remains the most cost-effective choice, natural gas emerges as a better option when safety and environmental 

sustainability are prioritized, due to its ability to produce lower carbon emissions. This makes natural gas more aligned 

with the growing need for fuels that adhere to strict environmental sustainability standards, such as reduced greenhouse 

gas emissions and more efficient combustion. The model's ability to combine both economic and environmental factors 

highlight its practical implications for industries seeking to balance cost-effectiveness with sustainability goals in fuel 

selection. However, the model's reliance on expert judgment and subjective assessments, especially during the fuzzy 

evaluation stage, may limit the accuracy of the results. Future research could improve the model by including additional 

factors, such as renewable energy sources, while also tackling the issues of data availability and uncertainty in real-

world applications. 
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