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Abstract 

This research article aimed at revolutionizing prosthetic leg technologies to enhance accessibility, affordability, and environmental sustainability. 
With a focus on addressing the diverse needs of amputees globally, the program integrates principles of eco-design, community engagement, 
technological innovation, and policy advocacy to foster inclusive and resilient societies which leads to the attainment of Sustainable Development 
Goal (SDG) Good Health and Well Being. Lower Limb Prosthetics of Activity Recognition is an innovative field combining prosthetic technology 
and activity recognition systems. The challenge of activity recognition in lower limb prosthetics to optimize the performance and responsiveness 
of mock limbs. In this work, the problem is overcome by using the Optimized deep learning technique, which improves activity recognition in 
lower limb prosthetics. The proposed methodology consists of (1) Pre-processing (2) Feature extraction (3) Feature classification. The collected 
images are pre-processed via improved wavelet demonizing and Empirical mode decomposition. From pre-processed data, the features are 
extracted using an improved sliding window method. The obtained extracted features are moved on to the Feature classification process. The 
classification process is done by the Optimized Long short- term memory. They are designed to better capture dependencies and patterns in 
sequential data, which makes them highly effective for tasks involving time series, natural language processing and other sequential data 
problems. Optimization can be done by proper data preprocessing and tuning the data from data extraction. The weight of the LSTM model is 
optimized to improve the performance of this model by the improved Black Window Optimization Algorithm. The main contributions of the 
paper are to obtain the best classification accuracy, an optimized LSTM model is introduced in this paper, and the weight of the LSTM model is 
enhanced by the improved Black Window Optimization algorithm. It improves the performance of the proposed system. 
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1. Introduction  

Many natural systems inspire humans to lead technical advancements. The field of biomedical engineering has 

advanced recently, allowing prosthetic limbs to be developed that mimic the range of motion of amputees [1]. 

Individuals regularly have their lower limbs amputated; prosthesis help people live better by giving back the mobility 

of their missing limbs. Losing one or multiple structural elements of the human organism, regardless of the cause, is 

commonly referred to as amputation. Common causes of limb loss include surgical amputations, certain diseases, and 

traumatic traumas [2]. 

Prosthetic limbs have been used since ancient times. Archaeological evidence suggests that early prosthetic devices 

were crafted by the Egyptians around 3000 BCE. These early prosthetics were typically made of wood and leather. In 

recent decades, advancements in materials science, robotics, and bioengineering have revolutionized prosthetic 

technology. Carbon fiber, microprocessors, and advanced sensor technology have enabled the creation of highly 

sophisticated prosthetic limbs that closely mimic the function and movement of natural limbs. Companies and 

researchers continue to push the boundaries of what is possible, with innovations such as mind-controlled prosthetics 

and osseointegration (the surgical implantation of prosthetic devices directly into the bone) becoming increasingly 

common. Lower limb prosthetics involves designing and constructing artificial limbs to substitute amputated or lost 

lower limbs, giving those who have lost limbs their mobility back. These prostheses are essential in helping amputees 
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regain their freedom and participate fully in everyday life [3]. Enhancing the user encounter and biomechanics are the 

main goals of recent developments in lower limb prosthesis. Innovations include powered prostheses with intelligent 

control systems, allowing for more natural and adaptive movements. Such prosthetics often integrate sensors and 

microprocessors to detect the user's gait intent, adjusting the prosthesis's behaviors accordingly [4]. The Materials and 

design play a pivotal role in ensuring comfort and durability.  

The interface among the prosthesis and residual limb, known as the prosthetic socket, is manufactured to provide an 

accurate fit and reduce pain. Additionally, advancements in socket technology aim to reduce pressure points and 

enhance overall comfort [5]. The field of lower limb prosthetics also explores the integration of robotics and artificial 

intelligence to enable prostheses that mimic human-like movements and respond to varying terrains. Research 

continues to refine these technologies, considering user-specific needs and preferences [6]. The development of lower 

limb prosthesis improves the general health and quality of life for those who are experiencing limb loss in addition to 

restoring physical capacities. Through continued research and development, amputees worldwide are looking for 

methods to enhance the prosthetic limbs' flexibility, accessibility, and smooth integration into their everyday lives [7]. 

Activity Recognition of Lower Limb prostheses entails the identification and classification of the movements and 

activities performed by individuals donning lower limb prostheses. The achievement is rendered feasible by the 

employment of cutting-edge technology, encompassing sensors and algorithms derived from the principles of machine 

learning [8]. Intending to improve user-prosthetic device interaction, the research seeks to provide more natural control 

and flexible responses. Walking and stair climbing are two examples of lower limb activities that the system can 

discriminate between by examining data such as surface electromyography (sEMG). The creative method advances the 

creation of intelligent prosthetic devices, enhancing their general usability and functionality for people who have lost 

limbs [9], [10]. 

Lower limb prosthetics with activity recognition is a cutting-edge field that combines advancements in prosthetic 

technology with intelligent systems to enhance the mobility and interaction of individuals with limb loss [11]. Activity 

recognition involves the identification and interpretation of various lower limb movements, enabling prostheses to 

adapt dynamically to the user's intentions [12]. The impact of lower limb prosthetics with activity recognition extends 

beyond basic mobility. Users can engage in a broader range of activities with increased confidence and reduced 

cognitive effort [13]. The navigating varied terrains or engaging in specific tasks like climbing stairs, the prosthetic 

adapts seamlessly to the user's needs. The integration of artificial intelligence and advanced sensor technologies holds 

the promise of further refining lower limb prosthetics with activity recognition [14]. This article proposes a 

comprehensive way to deal with prosthetic leg improvement that focuses on friendly value, ecological stewardship, 

and innovative headway. The main contributions of the paper are as follows: 

1) To enhance the extraction process, the improved sliding window technique is used in this paper, the effectiveness 

of this technique is demonstrated through improved precision and concert of lower limbs activity. 

2) To obtain the best classification accuracy, an optimized LSTM model is introduced in this paper, the weight of the 

LSTM model is enhanced by the improved Black Window Optimization algorithm. It improves the performance 

of the proposed system. 

2. Literature Study 

This section provides a review of a few of the more recent research studies that pertain to the Lower Limb Prosthetics 

of Activity Recognition. The researchers Vijayvargiya et al. [15] investigated the possibility of using wearable sensors, 

more sEMG sensors, to identify actions that occur in the lower limbs. Wavelet denoising and overlapping windowing 

were the methods that the author suggested for hybrid deep learning models. These methods were used to eliminate 

noise and segment signals. The performance indices demonstrate that these models perform better than individual 

models, which substantiates their effectiveness in identifying actions involving the lower limbs. Zhang and Tao [16] 

analyzed the disparities in scope, description of the research, availability of data, and incorrect citations. They addressed 

the Pattern recognition of Lower Limb Motion Based on a Convolutional Neural Network (CNN) and detailed the 

findings of their investigation. It discussed the utilization of sEMG signals and CNN for the purpose of evaluating the 

motion pattern of the lower limb. It drew attention to the fact that assistive technologies like exoskeletons require 
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precise motion identification, and it compared the accuracy of the proposed method to that of more conventional 

approaches.  

According to Cimolato et al. [17], a cutting-edge neuromusculoskeletal (NMS) model that makes use of machine 

learning techniques is currently being developed for lower limb prosthetics. This model is able to efficiently overcome 

the constraints that are associated with electromyography-driven models. Despite the fact that several electrodes are 

required, the particular model makes use of wearable sensors to estimate joint torque in order to create a smooth 

interface between human control and wearable robotics. In the year 2021, Wang et al. [18] presented their findings 

regarding the estimation of human lower limb movement using a multi-branch neural network rather than sEMG at the 

time. In order to analyze the movement of the lower limbs that was formed on sEMG signals in a sequential manner, 

the researchers designed a method. This research has the potential to make significant contributions to the field of 

biological signal processing and control. 

With the assistance of machine learning, Zhou et al. [19] explored the process of accurately recognising various forms 

of lower limb ambulation by utilizing surface electromyography and motion data. A method that combines these two 

types of data is proposed by the researchers as a means of improving the accuracy of recognition. This project is 

intended to make a significant contribution to the field of gait analysis and assistive technologies for those who have 

difficulties moving around due to mobility restrictions. During the year 2020, Hussain and colleagues [20] investigated 

the utilization of sEMG signals for the purpose of intent identification in lower limb prostheses. An innovative approach 

for extracting features is proposed, which makes use of bispectrum magnitude and unsupervised feature reduction. This 

method improves the performance of activity recognition. Both the great accuracy and the durability of the method in 

a variety of prosthesis kinds point to the possibility that it could be used to regulate wearable devices. In the year 2021, 

Wang [21] provided an explanation that the research makes use of a CNN deep learning system to determine the motion 

intention of lower limb prostheses, hence enhancing control performance. It is possible for the model to attain a 

recognition rate of 98.2% over a variety of terrains, which enables smooth transitions between different movement 

modes. It is necessary to conduct additional study in order to enhance the accuracy of recognition for various movement 

types. 

The neural network-based approach for assessing lower limb motion intention while using sEMG data was described 

by Li et al. [22] in the year 2022. An improved prediction accuracy is achieved by the utilization of a fuzzy wavelet 

neural network (FWNN) in conjunction with a zeroing neural network (ZNN) in the model. Additionally, it compares 

simulations by utilizing sEMG signals and motion data from seven muscles while the individual is walking. In addition 

to underlining the significance of sEMG signals, the model provides a theoretical foundation for rehabilitative robot 

interface and provides an accurate estimation of human motion intention. An efficient weighted feature technique was 

presented by Wang et al. [23] for the purpose of increasing the rate of appreciation for lower limb motions based on 

sEMG. The advanced genetic algorithm-support vector machine (IGA-SVM) was developed to solve the problem of 

the genetic algorithm choice operator accidentally falling into the local optimal solution. After putting the proposed 

method through its paces on six distinct lower limb motions, the results showed a regular identification rate of 94.75%. 

The method demonstrates how to recognize activities involving the lower limbs. In contrast, Vijayvargiya et al. [24] 

provided an explanation of the WD-EEMD technique that was introduced for the purpose of classifying lower limb 

activities by utilizing sEMG data. The utilization of empirical mode decomposition in conjunction with wavelet 

denoising is employed in order to eradicate unwanted signals and noise. A linear discriminant analysis classifier is used 

to test the technique, and it obtains a high level of classification accuracy that is satisfactory. Applications connected 

to the identification of lower limb activity also make use of sEMG signals. These applications include human-machine 

interface and neuromuscular disease diagnosis situations. 

The challenge of activity recognition in lower limb prosthetics to optimize the performance and responsiveness of 

mock limbs. In this work, the problem is overcome by using the Optimized deep learning technique, which improves 

activity recognition in lower limb prosthetics. The proposed methodology consists of Pre-processing, Feature extraction 

and Feature classification. The collected images are pre-processed via improved wavelet denoising and Empirical mode 

decomposition. From pre-processed data, the features are extracted using an Improved sliding window method. The 

obtained extracted features are moved on to the Feature classification process. The classification process is done by the 
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Optimized LSTM method. The weight of the LSTM model is optimized to improve the performance of this model by 

the improved Black Window Optimization Algorithm.  

Developing lower limb prosthetics through optimized deep learning models represents a significant stride towards 

achieving SDG 3: Good Health and Well-being. By leveraging advanced technologies like deep learning, prosthetic 

limbs can be tailored more precisely to individual needs, enhancing comfort, mobility, and overall quality of life for 

amputees. 

3. Methodology 

Lower Limb Prosthetics of Activity Recognition is an expanding field that combines advanced prosthetic technology 

with activity recognition systems to improve the functionality and usability of prosthetic limbs. By accurately detecting 

and classifying different activities, such as walking, running, or climbing stairs, individuals can experience a more 

seamless integration of their prosthetic limb into their daily lives. This can ultimately lead to increased independence 

and overall well-being for amputees. Figure 1 shows overall design for the proposed model. In this research work, the 

lower limb prosthetics of activity recognition is done using a deep learning model developed by the mentioned stages 

for the subsequent flow which includes comprehensive data acquisition flowed by elaborated pre-processing technique. 

The pre-processing includes improved wavelet diagnosis and empirical mode decomposition. Next, would-be rigorous 

feature extraction procedure to improve sliding window and time domain feature. Finally, advanced feature classifier 

mechanism will optimize the LSTM.  

 

Figure 1. Overall design for the proposed model 

3.1. Data Acquisition 

Images are used to acquire the raw data that is being collected. The process of retrieving a picture from an external 

source for the purpose of further processing is referred to as image acquisition in the field of image processing. Since 

there is no action that can be performed prior to the acquisition of a picture, this step is always the foundational one in 

the workflow. In order to categorize lower limb activity, the study makes use of datasets from the University of 

California, Irvine that are accessible to the public. There are 22 volunteer participants who are at least 18 years old, 

and only one of them is in good physical condition. The remaining people have knee deformities. When lower limb 

activities are being performed, the focus of the investigation is on the influence that EMG signals have on the muscles 

of the lower limbs [16]. Four surface electrodes and a goniometer that was mounted to the exterior of the knee joint 

were utilized in order to acquire the necessary data. Using a Bluetooth adapter, the data was transferred to the Datalog 

programme in real time after being stored on the computer directly from the MWX8 storage which was connected to 

the computer. This study focuses solely on the sEMG signals during lower limb movements in order to investigate the 

influence that EMG signals have on the muscles of the lower limbs. When it came to healthy individuals, there was no 

previous case history that was discovered relating knee pain or damage. 
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3.2. Pre-processing 

The Image from the data acquisition is pre-processed by Improved Wavelet Denoising and empirical mode 

decomposition. In Pre-processing the lower limb activity recognition involves refining raw data before analysis. 

Effective pre-processing enhances the accuracy of deep learning models for recognizing and classifying lower limb 

activities based on sensor data. Wavelet denoising and EMD are used for preprocessing because they offer effective 

methods for removing noise and decomposing signals into more manageable components. 

3.2.1. Improved Wavelet Denoising 

The procedure of performing wavelet denoising encompasses the application of a threshold to the wavelet coefficients 

to mitigate noise while preserving the crucial constituents of a signal and it is denoted as per the formula (1): 

R(g) = c(g) +  σ(g) (1) 

R(g) denotes the noisy signal, c(g) be the ideal signal and σ(g) be the noise intensity. 

Threshold Denoising: The role of the wavelet threshold is crucial in determining which wavelet coefficients are noise 

[25]. The threshold magnitude directly affects the quality of the reconstructed signal. The signal is created using low-

frequency constants from layer P then high-frequency constants from layers 1 to P. The key aspect is choosing the 

threshold and quantifying wavelet constants after threshold, as linked for denoising outcome. 

The execution of the thresholding operation is an essential and pivotal procedure in the enhancement of wavelet 

denoising. Among the selection of thresholding functions, notable examples encompass soft thresholding and hard 

thresholding. The function for conventional hard threshold denoising function is denoted as per the formula (2): 

𝑣𝑡,𝑢
′ = {

𝑣𝑡,𝑢|𝑣𝑡,𝑢| ≥ 𝜆

0      |𝑣𝑡,𝑢| < 𝜆
 (2) 

The function for conventional soft threshold denoising function is denoted as per the Formula (3): 

𝑣𝑡,𝑢
′ = {

𝑠𝑖𝑔𝑛(𝑣𝑡,𝑢) × (|𝑣𝑡,𝑢| − 𝜆)|𝑣𝑡,𝑢| ≥ 𝜆

     0                                         |𝑣𝑡,𝑢| < 𝜆
 (3) 

𝝀 be the threshold and 𝒗𝒕,𝒖
′  is the new wavelet constants. In soft thresholding function, there is constant variation among 

𝑣𝑡,𝑢
′ and 𝑣𝑡,𝑢 when  |𝑣𝑡,𝑢| ≥ 𝜆. 

3.2.2. Empirical Mode Decomposition (EMD) 

EMD is the methodology employed for scrutinizing data that entails breaking down a signal into intrinsic mode 

functions (IMFs) in order to apprehend its inherent oscillatory modes. This technique is especially efficacious in 

analyzing non-stationary signals, as it affords a focused and adaptable depiction of signal components, all the while 

abstaining from dependence on pre-established basis functions. 

1) The higherq(x) and lower i(x)covers are formed with interruption of all local maximum then minimum forg(x). 

2) A running mean envelope p(x) is calculated using p(x) =
q(x)+ i(x)

2
 

3) The mean cover is subtracted from signal, that bounces u(x) = g(x) − p(x). 
4) The u(x)verifies the IMF condition its entire length must be either equal or varies by 1. The mean value for𝒖(𝒙)be 

zero. 

5) If u(x)not fulfil the condition for IMF, g(x) is substituted with u(x) then selecting is sustained till the signal gotten 

meet the situations. The selecting process can also be ended if u(x)is monotonic function. The incentive signal 

g(x) gained through summation for IMFs then denotes as per the Formula (4): 

g(x) = ∑ IMFp(x) + sP(x)

P−1

p=1

 (4) 

𝑠𝑃 is enduring term later moving P − 1 IMFs. Though, EMD encounters challenge with regard to the frequent 

occurrence of mode mixing, which stems from its susceptibility to noise. To moderate this issue, the method of noise-

assisted data analysis, known as ensemble EMD, was introduced. It characterizes the IMFs as the mean value obtained 

from a set of experiments. A white noise series with equal typical variation is extra to targeted data denoted as per the 

Formula (5): 
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gp(x) = g(x) + lp(x) (5) 

lp(x) is path white noise series further to g(x), then gp(x) is noise-supplementary signal. 

3.3. Feature Extraction using Improved Sliding Window Technique 

The processed data from pre-processing are given to the feature extraction process. Feature extraction in lower limb 

activity recognition involves identifying and extracting relevant patterns or characteristics from sensor data, such as 

accelerometers or surface electromyography signals. Common features include temporal and frequency-domain 

attributes, statistical measures, or wavelet coefficients. The improved sliding window method is used for feature 

extraction in time-series data and other sequential data to enhance the accuracy and efficiency of identifying and 

capturing relevant patterns and characteristics 

The improved sliding windowing technique is employed for feature extraction, in contrast to considered whole signal 

at once, because of its stochastic nature. The procedure is used for segmentation, either adjacent or overlapped [24]. 

The outcomes demonstrate the accuracy of categorization is higher for the overlain windowing strategy compared to 

the adjacent or disjunct windowing scheme. Data stability during feature extraction is ensured by segmenting the data 

into brief windows. Each temporal series was divided into ideal segments or sub-frames using the overlapping 

windowing technique in this investigation. 

The feature extraction process exhaustively explained as trails: First, points 𝑅1(𝐼1, 𝐴1, 𝑋1), 𝑅2(𝐼2, 𝐴2, 𝑋2), and 

 𝑅3(𝐼3, 𝐴3, 𝑋3) were placed in primary window.  Using time  𝑋2  for point 𝑅2(𝐼2, 𝐴2, 𝑋2) as an index, the variance H 

among 𝑅1(𝐼1, 𝐴1, 𝑋1) and 𝑅3(𝐼3, 𝐴3, 𝑋3) can be calculated as 𝑅2
′ (𝐼2

′ , 𝐴2
′ , 𝑋2). If spacio temporal detachment H is under 

the threshold, then comparative azimuth angle from R1 to R2 were calculated and termed E1. The R1 sequence is 

denoted as E0. The alteration ΔE among E1 and E0 must be below the intended angle threshold. If this form is fulfilled, 

R2 can be erased. This should be below the considered angle threshold as per the formula (6), formula (7), formula (8), 

formula (9). 

Δ𝑘 = 𝑋𝑘−𝑋ℎ (6) 

Δ𝑑 = 𝑋𝑑 − 𝑇ℎ (7) 

𝐴𝑘
′ = 𝐴ℎ +

Δ𝑘

Δ𝑑
(𝐴𝑑 − 𝐴ℎ) (8) 

𝐼𝑘
′ = 𝐼ℎ +

Δ𝑘

Δ𝑑
(𝐼𝑑 − 𝐼ℎ) (9) 

where 𝐴be AIS latitude, 𝐼 is AIS longitude, 𝑋 be AIS time, Δ𝑘 denotes time passed from primary point to check point, 

also Δ𝑑 is time passed from the starting point to the end point. Muscle contraction, activity detection, and onset 

detection all make use of time-domain properties. Neurological problems and muscular exhaustion are detected using 

frequency domain characteristics. Table 1 shows the mathematical expression of Mean, Median, RMS, ZC, SSC, 

DASVD, variance, Average Amplitude Change, Skewness and kurtosis 

Table 1. mathematical expression of Mean, Median, RMS, ZC, SSC, DASVD, variance, Average Amplitude 

Change, Skewness and kurtosis. 

Metrics Description Mathematical expression 

Mean 
The arithmetic means of a collection of two or more 

numerical values. 
𝜇 =

1

𝐿
∑ |𝑢𝑘|

𝐿

𝑘=1
 

Root Mean 

Square (RMS) 

The statistical measure that calculates square root for 

average of the squared values within the dataset. 
√
1

𝐿
∑ |𝑢𝑘|

2
𝐿

𝑘=1
 

Zero Crossing 

(ZC) 

The signal processing concept identifies points in a signal 

where the amplitude changes its sign. It refers to instances 

where the signal crosses the zero axis. 

∑ 𝑓(𝑢𝑘)
𝑳−𝟏

𝒌=𝟏
 

Where  
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𝑓(𝑢𝑘) = {
1   𝑖𝑓, (𝑢𝑘 > 0  𝑎𝑛𝑑  𝑢𝑘+1 < 0 )

     𝑜𝑟(𝑢𝑘 < 0  𝑎𝑛𝑑  𝑢𝑘+1 > 0 )

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 

 

Slope Sign 

Change (SSC) 

Counting number of times slopefor signal variations its 

sign and employed to capture variations and transitions in a 

signal, providing insights into its dynamic behavior. 

∑ 𝑓(𝑢𝑘)
𝑳−𝟏

𝒌=𝟏
 

Where 

𝑓(𝑢𝑘)   

= {
1   𝑖𝑓, (𝑢𝑘 >   𝑢𝑘−1 𝑎𝑛𝑑 𝑢𝑘 >   𝑢𝑘+1)

     𝑜𝑟(𝑢𝑘 <   𝑢𝑘−1 𝑎𝑛𝑑  𝑢𝑘 <   𝑢𝑘+1)

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

 

Difference 

Absolute 

Standard 

Deviation Value 

(DASVD) 

An analytical statistical metric that evaluates the 

percentage difference among each data point and the mean 

to quantify the dispersion or variability of a group of 

values. A measure of how much data differ from the mean 

is the standard deviation, which must be calculated. 

√
1

𝐿 − 1
∑ (𝑢𝑘+1 − 𝑢𝑘)

2
𝐿−1

𝑘=1
 

Variance 

The statistical measure quantifies degree for spread or 

dispersal in set of data points. The average squared 

deviation for each data point from the mean of the dataset. 

1

𝐿 − 1
∑ (𝑢𝑘)

2
𝐿

𝑘=1
 

Average 

Amplitude 

Change (AAC) 

Calculates the average absolute difference in amplitude 

between consecutive data points within a signal. It 

quantifies the overall change in signal amplitude over a 

specific duration. 

1

𝐿
∑ |𝑢𝑘+1 − 𝑢𝑘|

𝐿−1

𝑘=1
 

Skewness 
The measurement for symmetry, or the absence thereof, is 

undertaken. 
𝑆𝑘𝑒𝑤 =

1

𝐿
∑[

(𝑢𝑘 − 𝑢)

𝜎
]

3𝐿

𝑘=1

 

Kurtosis 

Whether the data exhibits heavy-tailed or light-tailed 

characteristics can be assessed through appropriate 

measures. 
𝐾𝑢𝑟𝑡 =

1

𝐿
∑[

(𝑢𝑘 − 𝑢)

𝜎
]

4𝐿

𝑘=1

 

 

𝑢𝑘is a sample of the signal. 𝜎 denotes Standard Deviation.  𝐿 denotes the amount of data in the sample.𝑢𝑘 represents 

each data point 𝜇 be the average of the dataset. 

3.4. Feature Classification Using Optimized Deep Learning Methods 

Feature classification using optimized deep learning methods involves leveraging advanced techniques to categorize 

extracted features from data. The optimization process involves parameter tuning and efficient training, resulting in 

superior classification performance. This approach is pivotal in domains like lower limb prosthetics, where accurate 

feature classification is crucial for seamless integration and responsive control, ultimately improving the user 

experience. In this work, the optimized LSTM is used by improved black window optimization algorithm. The 

improved black window optimization algorithm (BWOA): The Improved Black Widow Optimization Algorithm 

signifies an ameliorated rendition of the BWOA, the bio-inspired optimization algorithm grounded on the predatory 

conduct of black widow spiders. The improved version likely incorporates refinements to the algorithm's exploration 

and exploitation mechanisms, aiming to enhance convergence speed and solution quality. These enhancements could 

include adaptive parameter tuning, modified updating strategies, or incorporation of additional heuristics for increased 

optimization. 

3.4.1. Population Initialization  

An algorithm's search range can be increased, its optimization level and convergence time can be accelerated, and its 

beginning population diversity can all help. The typical BWOA algorithm's development ability may be hampered by 

an unequal distribution of black widows resulting from random beginning population placements. These weaknesses 

can be made up for by the positives of the chaotic motion map, which include unpredictability, regularity, and 
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ergodicity. To minimize the drawbacks of arbitrary populace, initialize also to speed up merging, researchers [26] are 

increasingly employing traditional chaotic map patterns, such as logistic then sine maps, for population initialization 

in optimization algorithms. Chaotic maps, a subset of dynamical systems characterized by their sensitive dependence 

on initial conditions and deterministic yet unpredictable behavior, have several applications across various fields. The 

unique properties of chaotic systems, such as sensitivity to initial conditions and long-term unpredictability, provide 

advantages in scenarios requiring security, randomness, and complex dynamic behavior modeling. 

For logistic and sine maps, the value frequency is not uniform across the interval [0,1]. The algorithm's optimization 

efficiency will be decreased by the logistic map's or sine map's non uniform traversal. Determining the ideal position 

is not desirable, particularly when the global optimal position lies outside of the search range. Consequently, a novel 

double chaotic map approach is implemented, represented by Formula (10). Better diversity and more even distribution 

of the initial particles produced by the double chaotic map in the search space can increase the algorithm's optimization 

efficiency. 

{

gu+1 = q. gu(1 − gu)

ju+1 =
ω

4
sin(π. ju)

yu+1 = mod (gu+1 + ju+1, 1)

 (10) 

where gu, juthenyuincludeu-th chaotic number mod() is the remainder function. The original position for black widow 

specific is indicated throughyu+1with linear alteration, as per the Formula (11). 

𝑔𝑘⃗⃗ ⃗⃗ = 𝑖𝑎𝑘 + (𝑞𝑎𝑘 − 𝑖𝑎𝑘) × 𝑦𝑢 + 1 (11) 

where 𝑞𝑎𝑘 and 𝑖𝑎𝑘 are top and bottom limits of search space correspondingly. 

3.4.2. The Sine Guidance 

The sine guidance approach is introduced for prevent the original algorithm's premature convergence and increase 

optimization effectiveness of algorithm. It allows the algorithm for slowly approach optimal solution while fully 

utilizing variance data among spider and optimal spot. Linear and spiral motion are the two ways that spiders move on 

their webs. A black spider uses spiral movement to get to the optimal location g∗⃗⃗  ⃗(x)after learning information from a 

potential partner. 

The research proposes the sine algorithm to improve spiders' movement strategy. Despite boosting convergence speed, 

it reduces diversity in the spider population and increases the likelihood of local optimization.  The previous meta-

heuristic algorithms, updates a search space's position while considering the golden section coefficient, enhancing 

optimization precision. 

{
 
 

 
 𝑔𝑘

𝑥+1 = 𝑔𝑘  
𝑥 × |𝑠𝑖𝑛(𝑆1)| + 𝑆2 × 𝑠𝑖𝑛(𝑆1) × |𝜆1 × 𝑅∗

𝑥 − 𝜆2 × 𝑔𝑘
𝑥|

𝜆1 = 𝑏 + (1 − 𝜏) × 𝑎                                                                              

𝜆2 = (1 − 𝜏) × 𝑏 + 𝜏 × 𝑎                                                                                 

𝜏 = √5 − 1 2⁄

 (12) 

where R∗
x be historical best spot and gk

x denotes location of k-th individual in x-th iteration; S1 and S2 are accidental 

numbers; τrepresents golden section number. Original defaulting values for b and awereexamined to be −π and π, 

individually. λ1 and λ2were two coefficients found later presenting section coefficient. The standards of λ1 and λ2 were 

modernized as impartial function value deviations. The present value might also move closer to the desired value thanks 

to these factors that somewhat narrow the search field. Following the use of the sine search algorithm, the black widow 

spider's location updating equation during its online movement is denotes as per the Formula (13). 

gk⃗⃗⃗⃗ (x + 1){

g∗⃗⃗  ⃗(x) − pgs1⃗⃗⃗⃗⃗⃗ (x) if  rand ≤ 0.3                 

gk⃗⃗⃗⃗ × |sin(S1)| + S2 × sin(S1) × … .

|λ1 × g∗⃗⃗  ⃗(x) − λ2 × gk⃗⃗⃗⃗ (x)| in other cases

 (13) 

Every time the position is changed, the k-th spider that has moved for potential mate's spot in web will communicate 

by that person. Every individual spider can understand exactly how it differs from the ideal individual. Furthermore, 
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by varying parametersS1, S2, λ1 and λ2, the spider individual's movement may be controlled in terms of both distance 

and direction. Reducing the search space gradually is possible. The algorithm's convergence speed and optimization 

efficiency may be greatly enhanced. 

3.4.3. Reverse Differential Mutation Operator 

Every subsequent iteration will see a significant decline in the demographic variety in the BWOA. This research 

presents Cauchy bary center reverse variance mutation technique for produce altered spiders. The method aims to 

increase population variety, broaden the search area, and keep the algorithm from entering a state of local optimization. 

The reverse mutation in center of gravity is explicit as (g1t + g2t +⋯+ gLt) be value of L spiders on t-th dimension, 

the number of populations be Lthen, the number of the dimensions beF. The center of gravity for spider population in 

t-th dimension is defined by Formula (14). The center of gravity for population isYo = (Y1, Y2, …… . Yt, … , YF) 

yt =
g1t + g2t +⋯+ gLt

L
 (14) 

The reverse solution for center of gravity int-th dimension equivalent to k-th spider is as per the Formula (15): 

gnt = 2 ∗ cauchy(0,1) ∗ Yt − gkt (15) 

By using the Cauchy mutation, the algorithm may more successfully prevent position recurrence, broaden its search 

field, and improve its capacity for global exploration. The differentiated evolution algorithm, which repeats via methods 

of mutation, crossover, and choice, is based on the differential mutation operator. Population mutation is indicated by 

weighted sum for differences among any two randomly picked specific vectors on search space also individual vector 

chosen at random through third person as per the Formula (16). 

gnew_k = gs1 + C. (gs2 − gs3) (16) 

Where c is the scaling factor.𝑔𝑠1, and𝑔𝑠2 − 𝑔𝑠3were basis vector and the difference vector correspondingly.     

The benefits for two previously mentioned mutation procedures are combined in a novel mutation operator known as 

the Cauchy bary center reverse differential mutation operator, which places mutant spider close to modern population's 

center of gravity. The mutation operator expressed as per the Formula (17). 

Gnew = Yo + C ∗ (Gp2 − Gworst) + C ∗ (Gbest − Gp1) (17) 

where 𝑌𝑜denotes center of gravity for population. 𝐶be scaling factor. The two haphazardly chosen persons are arranged 

from excellent to terrible based on their fitness values, along with their corresponding individuals as 𝐺𝑏𝑒𝑠𝑡, 𝐺𝑝1, 

𝐺𝑝2,𝐺𝑤𝑜𝑟𝑠𝑡.The above Eq (17) expression, which moves from the population's center of gravity toward the ideal 

individual, is correlated with fitness value for four chosen individuals of each mutant spider 𝐺𝑏𝑒𝑠𝑡. 

The new mutation operator is not only arbitrary but also directional. IBWOA has a rapid convergence speed and can 

properly balance global exploration also local exploitation when novel hybrid strategies are applied to the algorithm 

for engineering-constrained optimization problems. 

3.4.4. The Time Complexity 

Let c be any optimization problem, and suppose the temporal complexity of determining important functional values 

is N(C) without compromising generality. As a result, the BWOA's temporal complexity is expressed as 

N(xmax × lHr × c). There are no newly nested loops for the IBWOA. The IBWOA's time complexity is 

N(xmax × lHr × lFD × c), where lFD be number of optimization problem valuations when Cauchy bary center reverse 

variance mutation operator is run, xmaxdenotesextreme number of iterations, and lHr represents number of spiders 

(populace size). When compared to original approach, the complexity increases marginally. Nonetheless, the 

algorithm's resilience, convergence speed, and search accuracy have all significantly increased. 
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3.4.5. The Space Complexity  

The IBWOA's space complexity is the maximum amount of space that is considered at startup and may be used at any 

given moment. Consequently, the total space intricacy for IBWOA is N(lHr × dim), where dim be dimension for 

optimization problem. 

LSTM: represents specific form of recurrent neural network structure meticulously devised to undertake the task of 

processing and forecasting sequences. LSTMs excel in capturing long-range depends on progressive data by 

maintaining memory cells with controllable forgetting and updating mechanisms. LSTMs find widespread application 

in the realm of time-series analysis, field of natural language dispensation, and discipline for speech recognition. They 

help to alleviate the vanishing gradient problem, which makes it possible to learn and model complicated temporal 

patterns effectively for a variety of applications and presented as per the Formula (18), Formula (19), Formula (20), 

Formula (21). 

jx = σ(Vj .  [ox−1, Vx]) (18) 

hx = σ(Vh . [ox−1, Vx]) (19) 

ox̂ = tanm(V .  [hx  ∗  ox−1, Vx]) (20) 

ox = (1 − jx) ∗  ox−1 + jx ∗ ox̂ (21) 

In an RNN, structure learning and parameter learning are done in two stages. The nodes receive membership functions 

in accordance with the input variable. The mean and variance are used to give the Gaussian membership function. Fire 

in space and temporal firing are used to assign membership functions that are just one dimension. All structure is 

learned ready to choose the appropriate time for each input to produce a rule and activate it with a firing strength greater 

than the threshold. The weight of the LSTM model is optimized to improve the performances of this model by the 

improved BWO. 

4. Results and Discussion 

This study introduces a model for the lower limb prosthetics of activity recognition using deep learning. This context 

compares the use of CNN, GRU and Optimized LSTM. To extract pertinent features, optimization model which is a 

fusion of Black window optimization, is employed. The presentation efficiency for recommended process is appraised 

through comparison it by various existing techniques in this section. 

4.1. Performance Metrics 

Several metrics were utilized to measure execution containing “Accuracy, Precision, F-Measure, Sensitivity, 

Specificity, negative prediction value (NPV), matthew’s correlation coefficient (MCC), false positive ratio (FPR), false 

negative ratio (FNR)”. Here we are measuring various performance metrics to compare it with existing system and to 

select best control algorithm for prosthetic leg. 

The accuracy refers to proportion for properly secret data towards entirety for data present in log. The Accuracy is 

defined as: 

Accuracy =
XR + XL

XR + CR + CL + XL
 (22) 

 

By utilizing all the instances employed in the process of categorization, precision denotes description for complete 

quantity of authentic samples which adequately accounted for throughout the process of classification.  

Precision =
XR

XR + CR
 (23) 

The F-measure can be defined as the average of the recall rate and accuracy, focusing on consonant values. 

FMeasure =
2 Precision × Recall

Precision + Recall
 (24) 
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The sensitivity measure is derived through the process of separating total number of positive consequences with ratio 

of accurate positive predictions. 

Sensitivity =
XR

XR + CL
 (25) 

The concept of specificity is deliberate as it is determined by proportion among number of acceptably predicted 

negative outcomes also complete number for negative outcomes: 

Specificity =
XL

XL + CR
 (26) 

The net present value (NPV) assesses the efficacy of an analytical examination or any other quantifiable measurement. 

NPV =
XL

XL + CL
 (27) 

Below is a depiction for binary variable suggestion measure referred to as MCC, which operates within a two-by-two 

framework. 

MCC =
(XR × XL − CR × CL)

√(XR + CL)(XL + CR)(XL + CL)(XR + CR)
 (28) 

The false positive rate is calculated by dividing the total number of negative events by the total number of negative 

events which are mistakenly classed as positive (false positives). 

FPR =
CR

CR + XL
 (29) 

The false-negative rate, also called the "miss rate," is the probability that a true positive might be missed by the test. 

FNR =
CL

CL + XR
 (30) 

4.2. Performance Evaluation 

The performance metrics of three different neural network models: CNN, GRU, and Optimized LSTM. The accuracy 

metric reflects the overall correctness of the models. Table 2 shows the performance analysis for proposed versus. 

existing classifier. 

Table 2. Performance analysis for proposed Vs existing classifier 

 CNN GRU Optimized LSTM 

Accuracy 0.96238 0.95023 0.98655 

Precision 0.9689 0.95023 0.98712 

Recall 0.96203 0.9575 0.98859 

F-score 0.96774 0.9534 0.98485 

Specificity 0.96667 0.9512 0.988 

Sensitivity 0.96386 0.95082 0.98701 

MCC 0.96591 0.95238 0.98805 

NPV 0.96458 0.95161 0.98855 

FPR 0.06341 0.07341 0.04341 

FNR 0.05954 0.08954 0.03954 

 

Table 2 shows the Optimized LSTM achieves the highest accuracy of 98.66%, surpassing both CNN and GRU. 

Precision, recall, and F-score provide insights into the models' ability to correctly classify positive instances. The 

Optimized LSTM exhibits superior precision (98.71%), recall (98.86%), and F-score (98.49%) compared to CNN and 

GRU. These values suggest the Optimized LSTM's proficiency in accurately recognizing positive occasions while 

minimizing false positives and false negatives. Specificity and sensitivity further elaborate on the models' performance 

in distinguishing between positive and negative instances. The Optimized LSTM demonstrates a high specificity of 

98.80%, indicating its effectiveness in correctly identifying negative instances, and a sensitivity of 98.70%, 



Journal of Applied Data Sciences 

Vol. 5, No. 3, September 2024, pp. 1147-1161 

ISSN 2723-6471 

1158 

 

 

 

emphasizing its capability to detect positive instances. MCC, NPV, FPR, and FNR collectively assess overall typical 

performance. The Optimized LSTM consistently outperforms CNN and GRU across these metrics, with MCC at 

98.81%, NPV at 98.86%, FPR at 4.34%, and FNR at 3.95%. So, it is best method of lower limb activity recognition by 

using this deep learning technique. Figure 2 depicts the classifier performance Analysis. 

    

(a)  (b)  (c) (d) 

    

(e) (f) (g) (h) 

  

(i) (j) 

Figure 2. Classifier performance Analysis for (a) accuracy, (b)Precision, (c) Recall, (d)F_score, (e)Specificity, (f) Sensitivity, 

(g)MCC, (h) NPV, (i) FPR, (j)FNR 

The values obtained for proposed model is related by existing techniques in Vijayvargiya et al. [16] and Vijayvargiya 

et al. [24] and Proposed model. The comparison in performed in terms of MAE, MSE, RMSE, correlation and MARE. 

The comparison is shown in table 3. 

Table 3. Comparison of performance metrics for proposed model and existing techniques 

 Accuracy Precision Sensitivity Specificity F-score 

In 2022, Vijayvargiya et al.[16] 96.69 96.50 96.62 98.37 96.55 

In 2021, Vijayvargiya et al. [24] 90.69 90.59 89.10 95.25 88.59 

Proposed 98.655 98.712 98.701 98.8 98.485 

 

Table 3 shows the achieved notable performance with 96.69% accuracy, exhibiting high precision (96.50%) and 

sensitivity (96.62%), alongside impressive specificity (98.37%) and F-score (96.55%). In 2021, a lower accuracy of 

90.69% was reported, with substantial improvements observed in the proposed method, showcasing superior accuracy 

(98.655%) and overall performance metrics. The proposed approach demonstrates enhanced precision, sensitivity, 

specificity, and F-score, emphasizing its efficacy in advancing activity recognition capabilities. In Existing model 

Accuracy and precision are less where as in proposed model we have used advanced method and improved accuracy 

and other metrics. Figure 3 below depicts the cclassifier performance Analysis for existing model. The results highlight 

the significant advancements made in activity recognition through the proposed approach, setting a new standard for 

performance metrics in this field. These findings underscore the importance of continuous innovation and refinement 

in developing more accurate and effective models for activity recognition. 
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(a) (b) (c) 

  
(d) (e) 

Figure 3. Classifier performance Analysis for existing model (a) accuracy, (b)Precision, (c)F_score, (d), (e)Specificity, (f) 

Sensitivity 

5. Conclusion  

The transformative role of deep learning techniques in revolutionizing lower limb prosthetics for improved activity 

recognition was explored. In this study, the employed approach involved the utilization of an optimized deep learning 

technique model to enhance the recognition of lower limb activities. The suggested methodology encompassed three 

key steps. The images that were gathered underwent pre-processing through the application of an enhanced wavelet 

denoising technique as well as Empirical mode decomposition. Subsequent to the pre-processing stage, features were 

extracted from the processed data by means of an enhanced sliding window approach along with a time domain feature. 

The extracted features were subsequently employed in the process of feature classification. The classification of the 

features was accomplished utilizing an Optimized LSTM model. The optimization of the LSTM model was achieved 

through the utilization of the black window Optimization algorithm. By calculating metrics like accuracy, precision, 

recall, F-score, specificity, sensitivity, MCC, NPV, FPR, FNR, the Optimized LSTM achieved higher percentages of 

accuracy (98.65%), precision (98.71%), sensitivity (98.70%), specificity (98.8%), and F-score (98.48%). Sustainable 

development principles offer a promising framework for advancing prosthetic leg innovation and improving the lives 

of amputees globally. Implementing advanced prosthetic technologies, such as those integrating microprocessors, 

neural interfaces, and advanced materials, comes with several potential challenges. By addressing the challenges 

through concerted efforts from researchers, healthcare providers, policymakers, and manufacturers, the benefits of 

advanced prosthetic technologies can be more widely realized, improving the quality of life for individuals with limb 

loss. The exploring multi-modal sensor fusion, adapting models through transfer learning, integrating advanced 

sensors, implementing edge computing, optimizing for diverse user populations, and addressing ethical considerations 

for user-centric lower limb prosthetics activity recognition using deep learning. 
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