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Abstract 

Indonesia possesses a rich cultural heritage, including the traditional Batak Toba Ulos textile, which is known for its diverse motifs and deep 

philosophical meanings. However, the preservation and visual recognition of Ulos remain challenging, particularly in terms of systematic 

documentation and automated classification. This study presents a visual recognition system for Batak Toba Ulos motifs using a transfer learning 

approach based on the MobileNetV2 architecture. The methodology involves the construction of a curated dataset of Ulos images, the application 

of data augmentation and preprocessing techniques, and model training utilizing ImageNet pre-trained weights. The system’s performance was 

evaluated using accuracy, precision, recall, and F1-score metrics. Results show that the model is capable of accurately classifying all 12 Ulos 

classes, achieving F1-scores ranging from 0.93 to 0.97. These findings demonstrate that transfer learning is effective in overcoming the limitations 

of culturally specific, small-scale datasets. This research contributes to the development of artificial intelligence tools for cultural preservation 

and supports the digital documentation and promotion of Batak Toba Ulos to younger generations and broader audiences in an efficient and 

scalable manner. 
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1. Introduction 

Indonesia is one of the most culturally diverse countries in the world, where traditional art plays an important role in 

representing local identity and values [1]. One example of this cultural richness is the traditional Batak Toba ulos cloth, 

which not only has aesthetic value but also carries deep philosophical, social, and spiritual meanings [2]. Historically, 

ulos has been integrated into various aspects of Batak Toba society, from traditional ceremonies and symbols of social 

status to expressions of Batak kinship values and cosmology. Each type of ulos has unique motifs, colors, and 

placements according to its meaning and function, ranging from Ragidup Ulos, Mangiring Ulos, to Sadum Ulos. 

However, amid the rapid pace of modernization and globalization, this traditional textile heritage faces the risk of 

losing its value and form due to the lack of digital documentation and the absence of an adaptive visual identification 

system [3]. The process of identifying and classifying ulos types manually still relies heavily on local knowledge and 

subjective experience, making it difficult to perform consistently, systematically, and sustainably. Therefore, a 

technology-based approach utilizing digital image processing and machine learning is needed to automatically, 

efficiently, and accurately recognize and classify the various types of ulos fabric. 

Various studies have utilized image processing and machine learning for visual cultural preservation, but most still 

focus on scripts, paintings, or cultural monuments in general. [4] developed a Batak Toba script recognition system 

using Siamese Neural Network and one-shot learning to overcome data limitations, but it is still limited to letters and 

does not yet cover traditional textiles such as ulos. [5] proposed an ethnomathematics approach to generate Batak 
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ornamental patterns through symmetry-based geometric transformations, but this approach was not accompanied by 

machine-based classification processes. [6] introduced ResNet-NTS with triple attention to recognize painting styles 

with high accuracy, but its scope is still limited to Western and Central Asian artworks. [7] developed a mobile 

application for recognizing Chongqing's intangible cultural heritage using CNN and transfer learning, but it does not 

cover traditional textile objects from Indonesia. Meanwhile, [8] proposed the Vision Transformer (ViT-HVE) to 

evaluate cultural value based on deep learning in the Yellow River region, and [9] compared CNN and Transformer 

architectures for cultural objects, but the focus remains predominantly on monuments, not non-monumental textiles 

like Batak Toba ulos. 

Previous studies have demonstrated the potential of machine learning technology in supporting the preservation of 

visual-based culture, but to date, no deep learning-based automatic classification system specifically designed for 

recognizing Batak ulos types from real digital images has been developed. Most approaches remain focused on script 

or painting, and have not yet addressed the richly meaningful local textile heritage such as ulos. Additionally, visual 

recognition of ulos faces technical challenges such as lighting variations, camera angles, pattern rotations, and complex 

fabric textures, which cannot be addressed using conventional approaches. Therefore, this study proposes the 

development of a visual recognition system for traditional Batak ulos fabric using a lightweight and efficient 

Convolutional Neural Network (CNN) architecture based on MobileNetV2. Using a transfer learning approach, the 

model can leverage visual representations from the pre-trained ImageNet model, then be fine-tuned to recognize various 

ulos images. The dataset used consists of ulos images from original visual documentation, processed through 

normalization, rotation- and lighting-based augmentation, and input dimension adjustment. It is hoped that this system 

can assist in the digital identification and preservation of ulos fabric, as well as open up opportunities for further 

application in cultural education platforms, digital museums, and mobile applications. 

2. Literature Review 

The application of artificial intelligence, particularly deep learning, has increasingly been adopted in the field of cultural 

heritage preservation, offering advanced capabilities for visual recognition, documentation, and classification. 

However, the majority of existing studies have focused on cultural artifacts such as monuments, paintings, and scripts, 

while relatively few have explored the automatic recognition of traditional textiles, especially those originating from 

Indonesia. 

One study proposed the use of the ResNet-NTS network with triple attention for the classification of painting styles 

and achieved high accuracy in identifying Western and Central Asian artworks [7]. Another study developed a mobile 

application utilizing CNN and transfer learning to identify intangible cultural heritage elements in the Chongqing 

region, focusing on sculptures and decorative objects rather than textile patterns [8]. These studies demonstrate the 

potential of deep learning in cultural classification tasks but do not address the complex structures of woven fabric 

motifs. 

In Indonesia, efforts related to Batak cultural heritage have mostly concentrated on character recognition. A study 

employed a Siamese Neural Network combined with one-shot learning to recognize Batak Toba characters from limited 

data [9]. Another approach used a geometric transformation method to generate traditional Batak ornamental motifs 

based on mathematical symmetry, although it lacked an automated classification component [10]. These works, while 

important for textual and ornamental preservation, have not extended their focus to fabric-based cultural artifacts such 

as Ulos. 

Elsewhere, deep learning frameworks have been applied to monumental heritage. A Vision Transformer-based model 

was introduced to evaluate cultural values in the Yellow River region, although its application was limited to large-

scale artifacts rather than everyday cultural textiles [11]. Comparative research has also been conducted on CNN and 

Transformer architectures for classifying cultural objects, showing that while deeper models may yield strong 

performance, they tend to overfit when trained on datasets with limited samples [12]. This characteristic is particularly 

relevant to traditional textile datasets, which often contain a small number of high-complexity images. 

While these studies highlight important developments in cultural recognition, they generally rely on heavy-weight 

architectures or domain-specific adaptations that are not optimized for deployment on limited data or in low-resource 
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environments. In contrast, MobileNetV2, a lightweight convolutional neural network model designed for mobile and 

embedded applications, uses inverted residual blocks and depthwise separable convolutions to achieve high accuracy 

with significantly reduced computational cost [13]. Its effectiveness has been demonstrated in diverse domains 

including medical imaging, agricultural diagnostics, and industrial object recognition [14], [15], particularly in cases 

involving small datasets and complex visual features. 

Despite these advantages, there is a noticeable gap in research applying MobileNetV2 to the classification of traditional 

Indonesian textile motifs. To the best of current knowledge, no existing study has utilized this architecture for 

recognizing Batak Toba Ulos, which are characterized by intricate geometric patterns and rich cultural symbolism. The 

present research addresses this gap by introducing a MobileNetV2-based transfer learning model trained on a curated 

dataset of Batak Toba Ulos motifs. This approach not only demonstrates the architectural suitability of MobileNetV2 

for cultural textile recognition but also contributes to the digital preservation of indigenous heritage through a replicable 

and efficient classification framework. 

3. Methods and Materials 

3.1. Research Approach 

This study uses an experimental quantitative approach with the Research and Development (R&D) method [10] to 

develop a machine learning-based intelligent classification model for Batak Toba ulos. The model was developed using 

a Convolutional Neural Network (CNN) architecture [11], [12] based on MobileNetV2 [13], [15], [16] due to its 

computational efficiency and good visual generalization capabilities, with the research stages shown in figure 1. 

 

Figure 1. Research Procedure 

The workflow begins with curated dataset collection and careful documentation of Batak Toba ornament images, 

ensuring each sample has clear class labels and provenance. A unified pre-processing pipeline then standardizes inputs: 

images are resized to the backbone’s expected resolution, normalized to stabilize optimization, and augmented with 

label-preserving transforms to expand diversity and reduce overfitting. These steps produce clean, consistent tensors 

that flow into the chosen backbone—MobileNetV2—selected for its efficient inverted-residual architecture that 

delivers a strong accuracy–latency trade-off suitable for limited compute and edge deployment. 

On top of the backbone, a lightweight classification head is designed and trained end-to-end using cross-entropy loss 

with standard practices such as learning-rate scheduling, early stopping, and checkpointing. After training, performance 

is quantified on a held-out split using accuracy, precision, recall, F1-score, and a confusion matrix to expose per-class 

behavior. Finally, interpretation methods (e.g., Grad-CAM and error analysis) are applied to visualize salient regions 

and diagnose failure modes, providing actionable insight to refine the dataset, tune augmentation, and iterate the model 

architecture. 
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3.2. Dataset 

The dataset used in this study is a collection of Batak Ulos images that have been divided into three structured subsets, 

namely training, validation, and testing, with directory organization based on 12 different ulos classes as classification 

targets. The training subset consists of 2,221 images used to train the model, with the application of augmentation 

techniques to increase variation and generalization capabilities. The validation subset contains 399 images that have 

not undergone augmentation and are used to monitor model performance during the training process and detect possible 

overfitting. Meanwhile, the test subset includes 663 ulos images without augmentation, which are used for final 

evaluation and objective measurement of the model's overall performance. All images in the dataset have been resized 

to 224×224 pixels to meet the input requirements of the deep learning model used. 

3.3. Model Architecture and Training 

The model architecture used in this study adapts MobileNetV2 as the main model, with several adjustments for the task 

of classifying Batak Toba ornaments. Modifications were made to the output section by applying the softmax activation 

function according to the number of motif classes recognized. The model training process was carried out using a fine-

tuning approach, which involves freezing approximately half of the initial layers of the default architecture and training 

the final half of the layers to adjust the model to the characteristics of the ornament data. For optimization, the Adam 

algorithm was used with an initial learning rate of 0.0001 to ensure stable convergence during training. The loss 

function applied is categorical cross-entropy, which is suitable for multi-class classification problems. Training was 

conducted for 20 epochs with a batch size of 32 to maintain a balance between efficiency and learning accuracy. During 

the training process, 20 percent of the dataset was used as a validation set to monitor model performance and avoid 

overfitting with the architecture in figure 2 below. 

 

Figure 2. Architecture of the Training Model 

3.4. Model Evaluation 

Model evaluation is performed by measuring the percentage of correct predictions against the entire data set. Precision 

and recall are applied to evaluate the classification performance for each class specifically, while the F1-score is 

calculated as the harmonic mean of precision and recall to provide a balanced view of both [17], [18], [19]. A confusion 

matrix is used to analyze the distribution of classification results between classes [20].   

3.5. Formulation of the Batak Toba Ulos Classification Model 

The formulation of the Batak Toba Ulos classification model in this study was developed to utilize the visual 

characteristics of digital images in identifying distinctive patterns on Batak Toba Ulos fabrics. Image data 

representation is performed by converting digital images into numerical matrices of size H×W×C, where H is the image 

height, W is the image width, and C = 3 represents the three RGB color channels [21]. This structure becomes the main 

input in the feature extraction process by the machine learning model with the equation:   

X ∈ ℝ^(H×W×C) (1) 

To ensure that the learning model formation process runs smoothly, pixel normalization is performed to adjust the 

intensity scale to the range [0,1], which is expressed as X_norm = X / 255, where X is the original image matrix and 

X_norm is the normalized image.   



Journal of Applied Data Sciences 

Vol. 6, No. 4, December 2025, pp. 2907-2920 

ISSN 2723-6471 

2911 

 

 

 

3.5.1.  Augmentation 

Augmentation is performed randomly to increase data diversity and model robustness against variations in image 

orientation and lighting [22]. The transformations applied include rotation, lighting, and horizontal flipping with the 

equation:  

X′ = rotate(Xnorm, θ), θ ∈ [−20o, +20o] (2) 

X′′ = X′ ∙  α, α ∈  [0.7,1.3] (3) 

X′′′ = flip(X′′) (4) 

X_norm is the normalized image, θ is the random rotation angle, α is the lighting factor, and the flip operation is 

performed horizontally.  

3.5.2.  Convolution Layer 

The convolution operation is a key component in the feature extraction process in convolutional neural networks. This 

process is performed by shifting the kernel on the image and calculating the corresponding element multiplication 

results, thereby producing a feature map that represents local patterns in the image [23]. The basic convolution 

operation is formulated in Formula (5) 

Si,j
(k)

= (X ∗ K(k))i,j = ∑ ∑ ∑ Xi+m,j+n,j ∙ Km,n,c
(k)

C

c−1

N−1

n−0

M−1

m−0

 (5) 

with X as the image input, K(k) as the k kernel, and S(k) as the convolution output at position (i,j). The values M and 

N indicate the kernel size, and C denotes the number of color channels. 

3.5.3.  Activation Function (ReLU) 

The ReLU activation function is used to add non-linearity to the neural network. This function produces zero for 

negative inputs and retains the original value for positive inputs, formulated as f(x) = max(0, x)ReLU. ReLU is chosen 

because it is efficient and speeds up the model training process [24]. 

3.5.4.  Depthwise Separable Convolution (MobileNetV2) 

MobileNetV2 uses a depthwise separable convolution approach to improve feature extraction efficiency [25]. This 

process consists of two main stages: depthwise convolution and pointwise convolution. The first stage, depthwise 

convolution, applies filters separately to each input channel using formula (6) 

Zd
(k)

= D(k)(X) (6) 

where X is the image input or feature from the previous layer, D(k) is the convolution operation for the k filter on each 

channel independently. The result is 𝑍𝑑
(𝑘)

. It is then further processed by pointwise convolution [26], [27], which is a 

1×11 convolution to combine information between channels using formula (7). 

Zp
(k)

= P(k)Zd
(k)

 (7) 

where P(k) is the kth convolution filter at the pointwise stage, and 𝑍𝑝
(𝑘)

 is the result of feature combination. Next, the 

non-linear activation function f is applied to obtain the final output in formula (8). 

Z(k) = fZp
(k)

 (8) 

The output Z(k) is then passed on to the next layer in the network. This approach allows MobileNetV2 to generate 

feature representations efficiently, with much lower computational load than conventional convolutions, without 

sacrificing accuracy. 
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3.5.5.  Feature Extraction to Loss Calculation 

After the feature extraction process through the MobileNetV2 network, the classification stage begins with Global 

Average Pooling (GAP) [28]. The GAP function reduces the spatial dimensions of the extracted features to a single 

average value per feature channel [29] using equation (9). 

zk =
1

H ∙ W
∑ ∑ Si,j

(k)

W

j=1

H

i=1

 (9) 

H and W are the height and width of the feature, while 𝑆𝑖,𝑗
(𝑘)

  is the activation value at position (i,j) for channel k. The 

result of GAP is then fed into the softmax activation function to generate the probability of each class: 

ŷi =
ezi

∑ eziC
j=1

    for i = 1, . . . , C (10) 

C is the number of classes, and 𝑦̂𝑖 is the predicted probability for class i. To evaluate how well the predictions are, we 

use a categorical cross-entropy loss function as follows: 

L = − ∑ yi ∙ log(

C

i=1

ŷi) (11) 

𝑦𝑖 is the actual label in one-hot encoding form, and  𝑦̂𝑖 is the predicted probability. This process enables the model to 

learn the optimal representation for multi-class classification end-to-end. 

3.5.6.  Optimization with Adam Technique 

Adam (Adaptive Moment Estimation) is an optimization algorithm widely used in deep learning because it combines 

the advantages of momentum and RMSProp [30]. In this process, the model weights are denoted as θ and updated 

using the loss gradient ∇Lₜ with a learning rate α. Adam calculates two types of exponential averages: mₜ, which is the 

momentum of the gradient, and vₜ, which is the momentum of the gradient squared. Both are controlled by decay 

coefficients β₁ and β₂, which are typically set to 0.9 and 0.999. To address initial bias, corrections are applied to produce 

m̂ₜ and v̂ₜ.d using formula (12). 

θt+1 = θt − α ∙
m̂t

√v̂t + ϵ
 (12) 

where ε is a small constant (usually 1e-8) to prevent division by zero. Adam accelerates convergence and maintains 

model training stability, making it well-suited for lightweight architectures such as MobileNetV2. 

4. Results and Discussion 

4.1. Classification Model Architecture 

In this study, the development of the Batak Toba Ulos motif recognition model was carried out using a Transfer 

Learning approach with a modified MobileNetV2 architecture. MobileNetV2 was chosen for its ability to balance 

model complexity and accuracy, as well as its efficiency in handling high-resolution image data that is limited in 

quantity, as is commonly found in the archiving of traditional cultural visuals. The model is designed to accept input 

in the form of 224 × 224-pixel images with 3 color channels (RGB), which are then processed through a series of 

lightweight convolution layers based on depthwise separable convolution. These layers are arranged in inverted 

residual blocks equipped with shortcut connections to maintain information continuity between layers. This structure 

enables the model to extract rich and contextual spatial features from the distinctive geometric motifs of Batak Toba 

Ulos, such as gorga, sihala, and simata ni ari. The features captured and processed by the convolutional layers are then 

summarized through a Global Average Pooling process, which aims to compress spatial information into a global 

feature representation without losing its essence. A Dropout layer is inserted afterward to reduce the risk of overfitting, 

given the limited amount of data. Finally, a Dense layer with a softmax activation function is used as the final 
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classification to map the prediction results into the 12 predefined Batak Toba Ulos motif classes using the Batak  Toba 

Ulos motif recognition structure in the following table 1. 

Table 1. Deep Learning Model Layer Structure for Batak Toba Ulos Motif Classification 

Layer Output Shape Parameters Description 

Input (224, 224, 3) 0 RGB image input 

Conv2D (112, 112, 32) 864 Initial feature extraction 

BatchNorm (112, 112, 32) 128 Activation normalization 

ReLU (112, 112, 32) 0 Non-linear activation 

DepthwiseConv2D (112, 112, 32) 288 Convolution per channel 

BatchNorm (112, 112, 32) 128 Normalization 

ReLU (112, 112, 32) 0 Activation 

Conv2D Project (112, 112, 16) 512 Feature dimension reduction 

BatchNorm (112, 112, 16) 64 Normalization 

Inverted Residual Block ×n ↓ spatial, ↑channel 1500000 Main MobileNetV2 convolution block 

GlobalAvgPooling2D (1280) 0 Spatial feature aggregation 

Dropout (1280) 0 Regularization 

Dense (Softmax) (12) 15372 class classification of Ulos motifs 

4.2. Training Model 

At this stage, the model is trained using the data prepared earlier. The goal is to optimize the weights in the network so 

that it can recognize patterns from the input data and produce accurate predictions. The training process lasts for 10 

epochs, during which the training data and validation data are evaluated at each epoch to observe the progress of the 

model's performance. 

Table 2. Model Performance per Epoch 

Epoch Accuracy (%) Loss Val Accuracy (%) Val Loss Time (s) 

1 22.32 2.2907 26.57 2.1023 874 

2 46.96 1.6533 48.12 1.6029 246 

3 68.53 1.1803 57.89 1.2471 238 

4 82.77 0.852 71.68 1.0093 252 

5 88.16 0.6633 84.21 0.8304 246 

6 92.0 0.5146 87.97 0.6952 252 

7 95.11 0.4134 92.48 0.5845 238 

8 96.36 0.3474 94.24 0.5085 240 

9 96.6 0.2866 94.74 0.4563 254 

10 97.91 0.2421 95.49 0.4061 239 

 

Based on table 2, in the first epoch, the model showed low accuracy on the training data (22.32%) and validation data 

(26.57%), with high loss values (2.2907 for training and 2.1023 for validation), and a relatively long training time of 

874 seconds. However, in the second epoch, there was a significant improvement, with training accuracy reaching 

46.96% and validation accuracy 48.12%, accompanied by a consistent decrease in loss. The model's performance 

continued to improve in the third to fifth epochs, with validation accuracy increasing to 84.21% and validation loss 
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decreasing to 0.8304, indicating that the model began to understand the patterns in the data more effectively. In the 

sixth to eighth epochs, training accuracy exceeded 90%, with validation accuracy reaching over 94%, and the 

continuously decreasing loss indicated a stable learning process without signs of overfitting. The training time per 

epoch was also relatively stable, ranging from 238 to 254 seconds. By the tenth epoch, the model achieved its highest 

accuracy of 97.91% on the training data and 95.49% on the validation data, with the lowest loss values (0.2421 and 

0.4061). This indicates that the model successfully generalized well to new data. The accuracy per epoch graph is 

illustrated in figure 3 below: 

 

Figure 3. Accuracy Graph Vs Epoch 

Based on figure 3, the model accuracy increased significantly during the 10 training epochs. At the beginning of 

training, the accuracy of the training and validation data was still low, but it increased sharply until the 5th epoch. 

Starting from the 6th epoch, the accuracy curve tended to stabilize, indicating that the model had reached convergence. 

At the end of training, the training accuracy reached 97.91% and the validation accuracy reached 95.49%, with a small 

difference, indicating that the model has good generalization and does not suffer from overfitting. The alignment of 

the two curves indicates an effective and stable training process, as well as the validity of the architecture and 

parameters used. The visualization of Loss Per Epoch is shown in figure 4. 

 

Figure 4. Graphic Loss Vs Epoch 

Figure 4 shows a consistent decrease in loss in both training and validation data over 10 epochs. At the beginning of 

training, the loss value was still high (above 2.0), but it gradually decreased as the number of epochs increased. This 

decrease reflects the model's improved ability to minimize prediction errors. Starting from the 6th epoch, the rate of 

loss reduction began to slow down, indicating that the model was approaching convergence. At the end of training, the 
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training loss reached 0.2421 and the validation loss reached 0.4061. The parallel trend of the graphs, which did not 

diverge from each other, indicates that the model did not experience overfitting and had stability in the learning process. 

4.3. Model Evaluation Against the Dataset 

The performance of the deep learning model was evaluated using several widely recognized classification metrics, 

namely precision, recall, and F1-score, for each individual class in the dataset. These metrics provide a comprehensive 

assessment of how accurately the model is able to identify and distinguish between the various types of Batak Toba 

Ulos motifs based on their manufacturing methods, which include both hand-weaving and machine-based production. 

The evaluation results clearly indicate that the model performs exceptionally well in learning and recognizing the 

intricate patterns associated with each class. This strong performance suggests that the model has successfully learned 

meaningful visual representations of the motifs during training, enabling it to generalize effectively to unseen validation 

data. To further understand the distribution of the model’s predictions, a confusion matrix was generated and is 

presented in figure 5. 

 

Figure 5. Confusion Matrix 

Figure 5 illustrates the confusion matrix resulting from the model’s classification outputs for twelve distinct classes. 

These classes are derived from combinations of six Ulos types, each represented in two different production methods: 

machine-made and hand-woven. In the matrix, the cells along the main diagonal represent the number of instances 

correctly predicted for each class. The number of correct predictions per class varies, with the highest reaching 71 and 

the lowest recorded at 33. The dominance of high values along the diagonal strongly indicates that the majority of 

predictions made by the model were accurate. This alignment of true labels with predicted labels serves as clear visual 

evidence of the model’s high classification performance. Although the model achieved near-perfect accuracy in most 

classes, a few minor misclassifications were observed in several closely related categories. 
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In particular, the classes Mangiring – Machine and Mangiring – Weaving showed a small number of errors, where 

some samples were incorrectly predicted as their visually similar counterparts. Similar patterns of confusion were also 

present between the machine and weaving variants of Ragi Hidup and Ragi Hotang, though the misclassification rates 

remained relatively low. The classes Sadum and Sibolang, especially their machine and weaving variants, experienced 

two to three cases of incorrect predictions that reflected a modest decrease in precision and recall. Nevertheless, these 

misclassifications were limited in number and did not significantly impact the overall performance. The confusion 

observed in these cases can be attributed to the high degree of visual similarity shared between the motifs produced by 

different techniques within the same Ulos type. In some instances, even human evaluators may find it challenging to 

distinguish between these variations without close inspection. 

To support the findings from the confusion matrix, table 3 presents the detailed classification metrics for each class, 

including precision, recall, and F1-score. These results further reinforce the model’s strong performance. Most classes 

achieved F1-scores close to or above 0.95, reflecting an excellent balance between sensitivity and specificity in the 

model’s predictions. Notably, classes such as Bintang Maratur – Machine and Bintang Maratur – Weaving reached F1-

scores of 0.97, indicating highly reliable predictions. Other classes, including Ragi Hidup – Weaving and Sadum – 

Weaving, maintained similar performance levels. Although the classes Sibolang – Machine and Sibolang – Weaving 

demonstrated slightly lower values in comparison, their F1-scores remained high at 0.96 and 0.93, respectively. These 

results show that the model consistently delivers accurate predictions across all classes, even when subtle visual 

differences are present between them. 

Table 3. Classification Evaluation 

Class Precision Recall F1-Score 

Bintang Maratur – Machine 0.98 0.95 0.97 

Bintang Maratur – Weaving 0.96 0.99 0.97 

Mangiring – Machine 0.97 0.95 0.96 

Mangiring – Weaving 0.91 0.95 0.93 

Ragi Hidup – Machine 0.96 0.94 0.95 

Ragi Hidup – Weaving 0.94 0.96 0.95 

Ragi Hotang – Machine 0.96 0.94 0.95 

Ragi Hotang – Weaving 0.93 0.95 0.94 

Sadum – Machine 0.97 0.95 0.96 

Sadum – Weaving 0.95 0.97 0.96 

Sibolang – Machine 0.97 0.95 0.96 

Sibolang – Weaving 0.92 0.94 0.93 

The outstanding performance achieved in this study can largely be attributed to the modified MobileNetV2 architecture 

employed as the backbone of the classification system. This architecture integrates inverted residual blocks and 

depthwise separable convolutions, which together enhance the model’s ability to extract spatial and geometric patterns 

while maintaining computational efficiency. Such capabilities are particularly valuable when working with traditional 

textiles like Ulos, which feature complex, repetitive patterns, gorga-like motifs, and symmetrical visual structures that 

are often difficult to detect using conventional convolutional techniques. Moreover, the model was trained using an 

effective combination of regularization techniques, such as dropout, and a customized data augmentation strategy that 

preserved the essential geometric properties of the textile patterns while enhancing generalization. 

Throughout the training process, the model demonstrated stable learning behavior. The training accuracy improved 

steadily from 22.32 percent in the first epoch to 97.91 percent in the tenth epoch. At the same time, the validation 

accuracy reached 95.49 percent, which closely followed the training accuracy curve. The relatively small gap between 

the two metrics and the consistently decreasing trend in both training and validation loss values confirm that the model 

did not overfit the training data. This balance indicates that the applied regularization methods were effective in 
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preventing the model from memorizing the training data and allowed it to generalize well to new, unseen examples. 

The learning curves also visually confirmed this finding, showing parallel progress between training and validation 

metrics that reflect a healthy and robust learning process. 

Although none of the classes achieved perfect precision, recall, or F1-score, the model's consistently high values across 

all metrics demonstrate that it performs with a high degree of accuracy and reliability. The only modest performance 

drops were observed in the Sibolang classes, which likely result from their high intra-class similarity. These classes 

share nearly identical visual features across their machine and hand-woven variants, making them difficult to 

distinguish even under expert human observation. This finding suggests that additional strategies may be required to 

improve the model’s sensitivity to fine-grained differences between such similar classes. Future work could explore 

advanced techniques such as fine-grained feature extraction or attention-based mechanisms to help the model focus 

more precisely on subtle but discriminative details within the motifs. 

The combination of a modified MobileNetV2 architecture, pattern-aware data augmentation, and a carefully curated 

Batak Toba Ulos image dataset has resulted in a classification system with exceptional accuracy, stability, and 

generalization capability. This research highlights the potential of lightweight convolutional neural networks for 

applications beyond traditional image classification tasks, especially in domains where visual complexity is high but 

data availability is limited. Moreover, it contributes to the broader goal of digital preservation of cultural heritage by 

providing a reliable, automated approach to recognizing and categorizing traditional textile motifs. Compared to 

previous studies that relied on conventional CNNs or deeper models like ResNet50 and faced issues with overfitting 

and suboptimal accuracy, the results in this study show clear improvements in both performance and model efficiency. 

The model’s ability to learn from relatively small but richly detailed datasets demonstrates the power of transfer 

learning when paired with architecture and training strategies tailored to the visual domain at hand. These findings 

support the hypothesis that MobileNetV2, when properly adapted, is well-suited for high-complexity, low-sample-size 

classification problems such as Ulos motif recognition. Most importantly, the model's success indicates that deep 

learning can be used not only for technological advancement but also for the meaningful task of preserving and 

celebrating cultural identity through visual heritage. 

4.4. Discussion 

The results of this study demonstrate that the use of a transfer learning approach with a modified MobileNetV2 

architecture can effectively address the challenges in classifying Batak Toba Ulos motifs from image data. The model 

achieved consistently high classification metrics across all twelve target classes, with F1-scores ranging from 0.93 to 

0.97. These results confirm that the combination of MobileNetV2’s lightweight structure and depthwise separable 

convolutions is well-suited for tasks involving limited data availability but complex visual structures, such as traditional 

textile patterns. 

One of the most notable findings in this study is the model’s ability to generalize well despite the dataset's relatively 

small size and high visual complexity. The gradual and consistent increase in accuracy over the 10 training epochs, 

paired with steadily decreasing loss values, indicates a stable training process without signs of overfitting. This stability 

is attributed to several factors, including the use of data augmentation techniques that preserve geometric consistency, 

the application of dropout layers to prevent overfitting, and the decision to fine-tune only the later layers of the pre-

trained MobileNetV2 network. These design choices reflect a careful balance between preserving the generalization 

capabilities of the base model and adapting it to the specific visual characteristics of Batak Toba Ulos. 

Compared to previous studies in similar domains, this study marks a significant advancement. For instance, earlier 

research involving traditional cultural image recognition has primarily focused on character recognition, monument 

classification, or stylized paintings, with limited attention given to non-monumental, textile-based heritage. The use of 

conventional CNNs or deeper networks like ResNet50 in those contexts often resulted in overfitting or insufficient 

accuracy, particularly when datasets were small or lacked diversity. In contrast, the model developed in this study 

maintained validation accuracy of over 95 percent, indicating superior generalization even in the presence of subtle 

intra-class variations. This performance difference highlights the advantage of using MobileNetV2, not only due to its 

efficiency but also its capability to learn discriminative features in low-data environments. 
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The confusion matrix and class-level evaluation metrics revealed that the few misclassifications observed were 

primarily between visually similar pairs, such as the machine and weaving variants of Mangiring, Ragi Hidup, Ragi 

Hotang, Sadum, and Sibolang. This confusion is understandable given the high degree of similarity in texture, color, 

and motif layout between these variants. The close resemblance between these subclasses sometimes poses challenges 

even for human observers, which suggests that the model’s near-perfect performance is already approaching the upper 

bound of what is practically achievable with current image-based recognition techniques. Nevertheless, the existence 

of these misclassifications points to an opportunity for future refinement. Incorporating fine-grained visual recognition 

techniques, such as attention mechanisms or localized feature learning modules, could further improve the model’s 

sensitivity to subtle motif differences and reduce inter-class confusion. 

The broader implications of this research are significant in both technological and cultural contexts. Technologically, 

the results affirm that lightweight convolutional networks like MobileNetV2 are not only viable but highly effective 

for domain-specific cultural applications. Culturally, the system provides a scalable and efficient framework for 

digitizing, preserving, and classifying indigenous textiles, which have historically been underrepresented in digital 

heritage research. The creation of a dedicated Batak Toba Ulos dataset further enhances the impact of this work by 

offering a reusable resource for future research and development in the field of cultural informatics. 

However, the study is not without limitations. Although the model performs well on the current dataset, its performance 

on real-world images captured under diverse lighting, backgrounds, and device settings has yet to be evaluated. Future 

studies should consider expanding the dataset to include such variations, as well as exploring the integration of multi-

modal data, such as historical context or regional usage information, to enrich the classification output. Furthermore, 

while this research has focused on classification, the potential extension of this system to object detection or 

segmentation tasks would be valuable for applications in Augmented Reality (AR) and virtual museum environments. 

In summary, this study provides empirical evidence that transfer learning with MobileNetV2, when paired with pattern-

aware augmentation and culturally grounded dataset construction, is highly effective for traditional textile 

classification. The system developed serves not only as a technological contribution to computer vision but also as a 

meaningful tool for preserving and promoting Indonesia’s rich cultural heritage through digital innovation. 

5. Conclusion 

This study successfully developed a classification model for Batak Toba Ulos motif images using a transfer learning 

approach with a modified MobileNetV2 architecture. The model is designed to efficiently process high-resolution 

image data with limited sample sizes, which is a common characteristic of traditional cultural archives. Through the 

use of depthwise separable convolutions and inverted residual blocks, the model effectively captures spatial and 

contextual features found in the distinctive geometric patterns of Batak Toba Ulos, including motifs such as gorga, 

sihala, and simata ni ari. 

The training process, conducted over 10 epochs, demonstrated consistent improvements in performance. Validation 

accuracy increased significantly from 26.57 percent in the first epoch to 95.49 percent in the tenth epoch, while 

validation loss decreased from 2.1023 to 0.4061. These results indicate a well-converged model with strong 

generalization capabilities. Evaluation using the confusion matrix and classification metrics such as precision, recall, 

and F1-score showed that all twelve classes were classified with high accuracy, achieving F1-scores between 0.93 and 

0.97. Although minor misclassifications were observed, particularly among classes with high visual similarity between 

machine-made and handwoven variants, the model demonstrated robust and reliable performance across all categories. 

Based on these findings, the model is well-suited to support automated visual recognition and digital documentation of 

Batak Toba Ulos motifs. Future work may focus on integrating the model into interactive platforms, such as virtual 

reality systems, to enhance user engagement and cultural education. Additional improvements could involve expanding 

the dataset, refining augmentation strategies, and exploring alternative model architectures that are more sensitive to 

fine-grained visual differences. Collaboration across disciplines, including contributions from cultural experts and 

traditional textile practitioners, will also be essential to ensure that the system remains technically accurate, culturally 

respectful, and aligned with the broader goals of heritage preservation through digital innovation. 
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