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Abstract 

Manually measuring egg weight in the context of livestock and the food industry can pose various problems, including time and labor 

requirements, the risk of egg damage, consistency and accuracy, and limitations on production scale. To address these issues, an automated egg 

weight estimation system is essential. This study proposes integrating computer vision and machine learning into a unified workflow that 

combines segmentation, classification, and regression for practical weight estimation. The proposed pipeline employs Mask R-CNN for egg 

segmentation, Random Forest (RF) classifier for egg type classification based on color features, and XGBoost for regression using morphological, 

geometric, color features, and egg type as predictors. The dataset used is 720 images, consisting of 20 eggs (10 chicken and 10 duck), each 

photographed from 36 rotational angles, and was collected with Ground Truth (GT) weights obtained from a digital scale. Experimental findings 

show that the RF classifier achieved perfect accuracy (precision, recall, and F1-score = 1.00) in distinguishing chicken and duck eggs. The 

XGBoost regressor obtained a training performance of MAE = 1.07 g and R² = 0.68, and a validation performance of MAE = 0.23 g and R² = 

0.80 under 10-fold grouped cross-validation. Although a Support Vector Regressor baseline reached higher training accuracy (MAE = 0.22 g, R² 

= 0.96), it failed to generalize on validation (R² < 0), highlighting XGBoost’s robustness. The feature importance analysis revealed that there are 

4 (four) important features for building an estimation model, namely: Hu moments, eccentricity, elongation, and diagonal length, while color 

statistics played a complementary role. The novelty of this work lies in combining deep segmentation, color-based classification, and feature-

driven regression into a unified framework specifically for egg weight estimation, showing its feasibility as a proof of concept and laying the 

foundation for future large-scale, calibrated, and externally validated deployment. 
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1. Introduction 

Eggs are an essential food commodity with high demand, making efficiency in sorting, weighing, and distribution 

crucial for the productivity and profitability of the livestock industry. As the global population grows, worldwide egg 

production has become one of the most important agricultural sectors and a vital part of the global food supply [1]. 

Currently, manual egg weighing requires significant human effort and time, hindering production and distribution 

processes. Image processing technology offers a cutting-edge solution for automating the measurement of egg weight. 

It delivers faster and more precise results with minimal human involvement, helping reduce costs and boost 

competitiveness in the market. Several studies indicate that computer vision-based systems can estimate egg weight 

and size with accuracy comparable to destructive methods, but without damaging the eggs [2]. Furthermore, camera-

based automation systems and morphometric analysis have been proven to accelerate the classification and grading of 

eggs on multi-flow production lines in real time [3].  

The performance of egg weight measurement using image and machine learning approaches has shown high correlation 

with actual weight, with low estimation error in field tests [4]. Machine learning and computer vision aim to bring 

human capabilities in data sensing, data understanding, and taking action based on past and present results into 

computers [5]. Consequently, the application of computer vision can significantly improve operational efficiency 

within the poultry industry. 
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In recent years, the development of deep learning and machine learning has opened new opportunities for image 

estimation and detection. Several previous studies have been conducted related to object weight estimation based on 

images using machine learning and deep learning, or even both. For instance, the study by [6] estimated pig weight by 

combining Mask R-CNN based image segmentation with an ensemble regression model. The best results were achieved 

using XGBoost, which delivered high accuracy with an MAE of 0.389, RMSE of 0.576, MAPE of 0.318%, and R² of 

0.995. This high accuracy was supported by the use of Mask R-CNN to extract pig contours more accurately through 

binary image conversion to address lighting issues. Additionally, key features such as Body Length (BL), Hip Width 

(HW), and the estimated camera to back distance (H_dep) were corrected and utilized by XGBoost based on actual pig 

measurements [6].  

In contrast to previous studies, this research focuses on developing an image-based egg weight estimation model using 

Mask R-CNN for segmentation and XGBoost for regression by integrating both morphological and color-based 

features specifically the mean values of HSV and RGB channels as well as the inclusion of egg type (chicken or duck) 

to improve model generalization. The predictive features include a combination of shape, size, color attributes, and Hu 

moments, such as width, height, area_bbox, aspect_ratio, cx, cy, diagonal_length, mask_area, mask_perimeter, extent, 

solidity, eccentricity, elongation, compactness, circularity, equivalent_diameter, hull_perimeter, Hu moments 1 to 7, 

mean_h, mean_s, mean_v, mean_r, mean_g, mean_b, and egg_type. The dataset consists of labeled images of various 

chicken and duck eggs paired with their actual weights, and model performance is evaluated using MAE, RMSE, 

MAPE, and R². 

2. Literature Review 

This literature review discusses egg characteristics, CNN architectures for image classification, Mask R-CNN for 

object segmentation, and XGBoost as a regression model for image-based estimation all of which are relevant to the 

development of an automated system aimed at addressing the challenges of egg weight estimation in the poultry 

industry. 

2.1. EGG 

Eggs are one of the most important and high-value poultry products in the global food industry. This commodity has a 

dual role as a source of high-quality animal protein and as an agribusiness commodity that supports household 

economies and food security [7]. Eggs contain a variety of nutrients that support metabolic health. For instance, eggs 

are a complete source of high-quality protein and contain 16 vitamins and minerals. Furthermore, eggs are cost efficient, 

the energy cost of eggs is significantly less when compared with that of other animal protein foods [8]. 

Global egg production has continued to increase significantly in the last two decades, driven by population growth, 

high demand for quality animal protein, and the adoption of modern poultry technologies such as closed-system coops 

and balanced nutritious feed [7]. This increase is also driven by the need for more environmentally friendly and efficient 

protein sources, in line with sustainable development efforts that position eggs as a nutritional alternative with a lower 

carbon footprint compared to red meat. 

Egg weight, a critical quality parameter in egg production, is influenced by multiple factors such as hen age, genetics, 

and nutrition. Older hens tend to produce larger eggs due to more developed reproductive systems [9]. Genetic 

differences between breeds also play a key role, with heavier breeds laying larger eggs [10]. Moreover, dietary 

composition especially soluble fiber and enzyme supplementation can enhance nutrient absorption, leading to increased 

egg weight [11]. Therefore, efficiency in egg production, sorting, and distribution is an important aspect that continues 

to be developed through technological innovations, including the use of computer vision-based systems and artificial 

intelligence. 

2.2. CNN  

Convolutional Neural Network (CNN) is a deep learning architecture widely used in computer vision for automatically 

extracting patterns, textures, and colors through convolutional and pooling layers [12]. In numerous studies, CNN has 

proven to be superior for image-based classification and regression tasks, including weight estimation of objects such 

as livestock and fish [6], [13]. Models such as VGGNet, ResNet, and Inception are frequently used due to their strong 
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generalization capabilities on image data  [14], and can be combined with transfer learning techniques to accelerate 

training and improve accuracy on limited datasets [15]. 

 

Figure 1. CNN Architecture (adapted from W.Taparduhee, et al. [13]) 

CNNs employ convolutional operations to acquire hierarchical representations directly from the input data, facilitating 

efficient feature extraction and pattern identification [16]. Based on figure 1, CNN works by extracting spatial 

information through a layered structure consisting of three main components, convolutional layers for feature 

extraction, pooling layers for dimensionality reduction and preventing overfitting, and fully connected layers that serve 

as the final classifier [12]. With this architecture, CNN is capable of hierarchically identifying complex patterns without 

the need for manual feature engineering, making it highly effective in various image-based applications, including the 

weight estimation of biological objects [13], [6]. 

2.3. Mask R-CNN 

Mask R-CNN (Mask Regional Convolutional Neural Network) is one of the most influential deep learning models in 

the field of instance segmentation, combining object detection and pixel segmentation simultaneously within a unified 

framework [17]. This model is an extension of Faster R-CNN with an added dedicated branch for mask prediction, 

which allows for high-precision object contour extraction [18]. 

The main advantage of Mask R-CNN lies in its ability to separate individual objects even under conditions of high 

overlap and background complexity. Mask R-CNN has been successfully applied in various fields such as precision 

agriculture (apple flower detection and strawberry disease detection), medicine (blood cell analysis and skin lesion 

analysis), and even construction and manufacturing (rebar detection and particle segmentation) [19], [20]. 

In the context of biological and agricultural images, Mask R-CNN has proven effective in handling instance 

segmentation of natural objects with irregular shapes. Research conducted by [7] demonstrated Mask R-CNN's high 

performance in visually detecting and mapping diseases on strawberry fruits based on digital images [17]. Beyond 

segmentation accuracy, Mask R-CNN is also popular due to its flexibility to be used with modern backbone 

architectures such as ResNet and Feature Pyramid Network (FPN), which enables efficient multi-scale detection [21]. 

2.4. Extreme Gradient Boosting (XGBoost)  

XGBoost is a highly efficient and accurate ensemble algorithm for regression and classification tasks, and is widely 

used in image-based estimation due to its superiority in handling high-dimensional data and correlated features [22]. 

In the context of image-based weight estimation, the XGBoost is employed to map extracted visual features (e.g., from 

CNN or morphometric techniques) into numerical values such as the weight or volume of biological objects [6]. 

One of XGBoost's main strengths lies in its ability to iteratively build predictive models by adding decision trees that 

correct the errors of previous models. Additionally, this algorithm possesses automatic feature selection capability 

based on gain or the feature's contribution to loss reduction, which makes it highly suitable for datasets resulting from 

complex image extraction [23]. In mathematical form, the objective function of the XGBoost for regression is [24]: 

Obj(𝜃) =∑ 𝐿(𝑦𝑖 , ŷ𝑖
(𝑡))

𝑛

i=1
+∑ Ω(fk)

𝑡

k=1
 (1) 

L= Loss function (e.g., squared error: (𝑦𝑖 − ŷ𝑖)
2); ŷ𝑖

(𝑡)
=  ∑ fk(xi)

𝑡
k=1  : Cumulative prediction from tree – t; Ω(𝑓)= 

𝛾𝑇 +
1

2
𝜆∑ 𝜔𝑗

2𝑇
j=1 ; T is the number of leaves; 𝜔𝑗 is the score on leaf j; 𝛾, 𝜆 are regularization parameters 

This formula reflects that XGBoost not only minimizes error but also controls model complexity to prevent overfitting. 
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In various recent studies, XGBoost has been widely used in the context of agriculture and food, such as estimating pig 

weight using features from body images [6], predicting crop yields using drone imagery [25], and assessing tuber 

quality with image texture features [26]. Its use is often combined with CNN or Mask R-CNN in hybrid schemes to 

improve estimation precision [23]. 

3. Methodology  

This section elaborates on the methodology applied in the image-based egg weight estimation research using a 

combination of Mask R-CNN and XGBoost. The explanation begins with a general overview of the business process 

model, illustrating the overall system workflow. Subsequently, it specifically discusses the acquisition and 

characteristics of the dataset used, including the technical specifications for image capture to ensure consistent data 

quality. Finally, the crucial manual dataset labeling stage, which forms the foundation for the Mask R-CNN image 

segmentation process, is also explained. 

3.1. Business Process Model  

This study follows a sequential pipeline from data acquisition to inference. After collecting images and their GT 

weights, the dataset is partitioned at the egg level using GroupKFold with 10-folds. In this setup, all 36 views of a 

single egg are assigned exclusively to one-fold, ensuring that the same egg never appears simultaneously in both 

training and validation subsets. This grouped cross-validation strategy effectively prevents information leakage and 

provides a more robust and unbiased estimate of the model’s generalization ability. Figure 2 summarizes the workflow.  

The training set is used to fit a Mask R-CNN for instance segmentation, from which morphological, shape, and color 

features are extracted. A lightweight classifier predicts egg type (chicken vs duck) from color cues, and its output is 

added as a feature for regression. Finally, all features and the egg-type indicator are fed into an XGBoost regressor to 

estimate egg weight. 

 

Figure 2. Business Process Model 

Model performance is assessed on the held-out validation set using MAE (g), RMSE (g), MAPE (%), and R². The main 

segmentation settings for Mask R-CNN are reported in table 1, while the feature-based regression experiments and 

XGBoost hyperparameters are listed in table 2. 

The parameters in table 1 are set to optimize Mask R-CNN training. MAX_ITER controls total iterations, 

DATALOADER.NUM_WORKERS sets parallel data loading, and SOLVER.IMS_PER_BATCH defines batch size. 

The initial learning rate (SOLVER.BASE_LR) decreases at steps set by SOLVER.STEPS and scaled by 

SOLVER.GAMMA. MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE determines the number of region 

proposals sampled per image for RoI head training. 

The model uses a ResNet-50 backbone with FPN for multi-scale feature extraction. BatchNorm and early layers (up to 

stage 2) are frozen for stable fine-tuning. Input images are randomly resized (shorter side: {640 to 800}, longer side 

≤1333) for multi-scale training. Anchor sizes {32 to 512} enable the RPN to detect various object scales. ROIAlign is 
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applied at 7×7 (box) and 14×14 (mask) with zero sampling ratio for accurate interpolation. Data augmentation includes 

random flips, brightness/contrast/saturation tweaks, and small rotations (±5°) to improve generalization. 

We also recorded computational footprints during training. On a Kaggle environment with a Tesla T4 GPU (≈14.7 

GiB), each fold required about 1.8 to 2.3 hours of training time, averaging roughly 2.1 hours. Peak GPU memory usage 

typically ranged from 6 to 7 GiB, with occasional peaks up to 10.6 GiB, while CPU memory usage remained around 

2.4 to 2.9 GiB. The final model checkpoints were about 335 MiB in size, containing roughly 43.9 million parameters 

(≈ 43.7 million trainable). These values indicate that the chosen batch size, learning schedule, and augmentation 

strategy were well balanced against the available hardware, yielding stable training without excessive memory 

overhead. 

Table 1. Configuration Mask R-CNN 

parameter configuration 

MAX_ITER 3000 

DATALOADER.NUM_WORKERS 8 

SOLVER.IMS_PER_BATCH 8 

SOLVER.BASE_LR 0.0001 

SOLVER.STEPS (2000, 2500) 

SOLVER.GAMMA 0.1 

MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 256 

To evaluate the predictive performance of the XGBoost regressor, we applied a feature standardization step prior to 

training. All continuous predictors (morphology, shape descriptors, and color statistics) were standardized using z-

score scaling (mean = 0, std = 1), while the binary indicator egg_type_pred_bin (0 = chicken, 1 = duck) was kept 

unscaled to preserve interpretability. This preprocessing improves numerical comparability across heterogeneous 

feature ranges and mitigates dominance of large-magnitude variables. 

Table 2. XGBoost Experimental Setup 

features used XGBoost hyperparameter 

n_estimators 100 

learning_rate 0.01 

max_depth 7 

subsample 0.8 

reg_alpha 0.01 

min_child_weight 5 

gamma 0.1 

reg_lambda 0.1 

objective 'reg:squarederror' 

random_state 42 

n_jobs -1 

The model hyperparameters (table 2) balance complexity, regularization, and efficiency: n_estimators controls the 

boosting rounds; learning_rate scales each tree’s contribution; max_depth, min_child_weight, and gamma regularize 

tree growth; subsample regulates row sampling; reg_alpha (L1) and reg_lambda (L2) add further regularization; 

objective='reg:squarederror' sets the loss; random_state ensures reproducibility; and n_jobs enables parallelism. 
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3.2. Dataset 

The dataset consists of primary images of chicken and duck eggs captured directly using a Samsung Galaxy A35 

smartphone. Photos were taken under controlled conditions: 15 cm distance, consistent lighting from a 5W LED lamp, 

and the 50 MP wide lens (f/1.8, OIS) to reduce lighting variation and shadows. This low-cost setup ensures consistent 

image quality, though measurements remain pixel-based due to the lack of professional calibration tools. 

Each egg was placed on a circular rotation template marked at 10° intervals, allowing systematic image capture from 

36 viewpoints per egg. In the resulting images, the actual object length corresponds to approximately 307 to 314 pixels 

per centimeter, providing a practical scale reference even though the extracted features remain pixel-based. This 

procedure produced a comprehensive representation of each egg’s geometry. In total, the dataset consists of 720 images 

(360 chicken eggs and 360 duck eggs). The GT weight of each egg was measured using a digital scale and stored as 

the regression target. 

Representative samples of the dataset are shown in figure 3a for chicken eggs and figure 3b for duck eggs. As 

illustrated, chicken eggs generally exhibit a brownish hue with relatively smoother shell texture, whereas duck eggs 

display a greenish-white tint with subtle surface irregularities. These visual differences highlight the relevance of color 

and texture cues in the classification stage, which subsequently contributes as an auxiliary feature in the regression 

model. 

  

Figure 3. Chicken Egg and Duck Egg 

3.3. Labeling Dataset 

Before conducting training with Mask R-CNN for segmentation, a crucial step involves manual dataset annotation. In 

this research, the LabelMe software was employed to annotate each egg object by carefully tracing its contour. The 

annotation was performed point by point to follow the natural curvature of the egg, ensuring accurate boundary 

representation. This high precision labeling is essential because segmentation quality directly influences the reliability 

of the extracted morphological, shape, and color features. 

As illustrated in figure 4, each image was processed in LabelMe, where the egg boundary is outlined with a polygon 

mask highlighted in green. All annotation results were then exported and standardized into COCO format, which 

provides compatibility with Mask R-CNN training. In addition to segmentation masks, the dataset annotations were 

also enriched with the GT egg weight, enabling the direct linkage between image-based features and the regression 

target. 

\ 

Figure 4. Labeling Dataset 
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This manual annotation procedure forms the foundation of the proposed system, as it guarantees that the segmentation 

model learns from precisely delineated object boundaries. Consequently, the downstream tasks of feature extraction, 

classification, and regression can be executed with higher accuracy. 

4. Results and Discussion 

The experimental results show that the proposed image-based egg weight estimation approach achieves reliable 

performance. Features were successfully extracted using Mask R-CNN, and the optimized XGBoost model 

demonstrated competitive prediction accuracy with low error margins. 

4.1. Feature Extraction  

After segmenting egg objects using the Mask R-CNN method, various features were extracted to capture the 

morphological, shape descriptor, and color characteristics of each object. The morphological features include bounding 

box dimensions (width, height, area_bbox, aspect ratio, centroid coordinates, diagonal length) and mask-derived 

descriptors (mask area, mask perimeter, extent, solidity, eccentricity, elongation, compactness, circularity, equivalent 

diameter, and hull perimeter). In addition, Hu moments (Hu1 to Hu7) were extracted as invariant descriptors for shape. 

Color statistics were computed from the HSV color space (mean_h, mean_s, mean_v, std_h, std_s, std_v) and RGB 

color space (mean_r, mean_g, mean_b, std_r, std_g, std_b). These color features also served as the basis for egg type 

classification (chicken vs. duck), leveraging pigmentation differences in eggshells. Prior to regression, all continuous 

numerical features were standardized using the StandardScaler method to ensure zero mean and unit variance, while 

the binary egg type feature was used without scaling. The feature extraction results are presented in table 3.  

Table 3. Feature Extraction 

Feature extraction results 

egg_type width … eccentricity elongation compactness 
circularit

y 
… hu_7 weight 

duck_egg 1108.802 

… 

0.192 1.213 14.515 0.866 

… 

9.999998654 61.9 

duck_egg 1099.074 0.184 1.206 14.557 0.863 9.999957614 62.4 

chicken_egg 949.823 0.275 1.323 14.706 0.855 -9.999912131 63.7 

chicken_egg 969.945 0.210 1.231 14.559 0.863 9.9998401 60 

chicken_egg 860.051 0.265 1.313 14.665 0.857 9.999935961 64.1 

Hu moments (Hu1 to Hu7) are invariant shape descriptors that are highly sensitive to geometric structures. The values 

shown in the feature extraction results may appear extreme (for example, approaching ±9) or sometimes negative. This 

is normal because OpenCV computes Hu moments on a logarithmic scale, which compresses a very wide numeric 

range into values that often concentrate at the upper or lower bounds of floating-point precision. Negative values 

naturally arise from the logarithmic transformation applied to very small moments. These characteristics are not errors 

but reflect the mathematical nature of Hu moments, which are designed to remain invariant to object rotation, scale, 

and translation. 

4.2. Results and Evaluation 

4.2.1. Egg Type Classification 

Before regression, egg type classification was performed using a Random Forest with color-based features, achieving 

perfect validation accuracy (precision, recall, and F1-score each 1.00). This is expected, as chicken and duck eggs 

differ clearly in color, making these features highly discriminative. The predicted label (egg_type_pred_bin) was then 

used as an additional input for regression. To prevent label leakage, the classifier was trained only on the training set, 

and predictions - not true labels - were used on the validation set to simulate test-time conditions.  
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4.2.2. XGBoost Regression 

The final performance of the XGBoost regressor was evaluated on both the training and validation sets using the full 

standardized feature set, which also incorporated the predicted egg type from the Random Forest classifier. To ensure 

robustness, the experiments were conducted using a 10-fold grouped cross-validation strategy, where all 36 images of 

the same egg were kept in a single fold. The results for each fold are summarized in table 4, showing considerable 

variability across folds due to the small dataset size. Among these, the best performance was achieved on fold 6. 

Table 4. Final performance of the XGBoost regressor 

Fold Dataset MAE (g) RMSE (g) MAPE (%) R² 

1 
Train 1.059 1.323 1.65% 0.6205 

Val 3.040 3.884 5.12% -2.2629 

2 
Train 1.801 2.287 2.83% 0.1003 

Val 0.706 0.972 1.09% -1.6262 

3 
Train 1.011 1.344 1.60% 0.6208 

Val 3.836 4.411 5.78% -1.1623 

4 
Train 0.723 0.962 1.13% 0.8039 

Val 2.705 2.987 4.48% -34.6844 

5 
Train 1.152 1.500 1.81% 0.6070 

Val 1.658 1.851 2.58% -1.0270 

6 
Train 1.066 1.373 1.68% 0.6781 

Val 0.231 0.334 0.36% 0.8012 

7 
Train 0.702 0.959 1.11% 0.8258 

Val 2.020 2.192 3.11% 0.0914 

8 
Train 1.480 1.849 2.33% 0.4204 

Val 0.174 0.206 0.27% 0.6540 

9 
Train 1.036 1.401 1.64% 0.5476 

Val 3.720 3.883 5.53% -11.4582 

10 
Train 1.212 1.535 1.91% 0.5990 

Val 1.571 1.610 2.49% -40.4868 

As shown in table 3, the model had lower absolute errors on the validation set. The Bland Altman plots (figure 5a and 

figure 5b) support this training predictions scatter widely with limits near ± 3 g, indicating underfitting, while validation 

results are tighter (± 0.7 g) and cluster around zero bias, showing more consistent performance on unseen eggs. 

  

Figure 5a. Bland Altman Plot (Train) Figure 5b. Bland Altman Plot (Val) 
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At first glance, it may seem unusual that validation outperforms training. This is mainly due to the GroupKFold setup, 

which places all images of the same egg in one-fold. As a result, the validation set often includes eggs with weights 

closer to the average-easier to predict-while the training set contains more variability, leading to higher errors. This 

reflects how dataset structure affects both performance metrics and patterns in the plots. As a baseline, the Support 

Vector Regressor (SVR) achieved strong training performance (MAE = 0.22 g, R² = 0.96) but failed to generalize 

(validation MAE = 0.65 g, R² = -0.14). In contrast, XGBoost produced lower validation errors and positive R², making 

it more reliable under grouped cross-validation. 

Furthermore, an out-of-validation test was conducted using unseen egg samples that were not part of either the training 

or validation folds. The performance degraded substantially (MAE = 5.13 g, RMSE = 6.06 g, MAPE = 7.76%, R² = -

0.09), confirming the limited generalization of the model to completely new eggs. This result highlights the need for 

larger and more diverse datasets, as well as external validation across different acquisition sessions, to ensure 

robustness in real-world deployment. 

4.2.3. Loss Curve 

During training, we tracked optimization in both segmentation and regression. For segmentation, the Mask R-CNN 

loss components steadily decreased over the first ~700 iterations and plateaued near zero by ~3,000 iterations (figure 

6a), indicating stable convergence given the homogeneous dataset. However, training losses alone do not guarantee 

generalization and must be considered with validation results. 

  

Figure 6a. Loss curve mask r-cnn Figure 6b. Loss curve xgboost 

For regression, XGBoost’s learning was tracked with RMSE on training and validation sets. Figure 6b shows training 

RMSE falling below 1 g, while validation RMSE dropped until around the 50th boosting round, then leveled at 0.4 to 

0.6 g. This gap reflects the GroupKFold setup, where all 36 views of an egg stay in one-fold, so validation tests unseen 

eggs. The results show the model captures size cues well, but further gains may require larger datasets, stronger 

regularization, or physical feature calibration. 

4.2.4. Feature Importance 

The contribution of each feature to the predictive performance of the XGBoost model was analyzed using the gain 

metric. Figure 7 presents the top 20 most influential features. 

 

Figure 7. Feature importance 
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The results show that Hu moments particularly hu_1, hu_2, and hu_4 dominate the ranking, followed by several 

morphological and geometric descriptors such as eccentricity, elongation, and diagonal_length, along with (to a lesser 

extent) mask_perimeter, area_bbox, and mask_area. In addition, several color features are also highly ranked, 

especially the mean values of mean_b and mean_g (RGB channels) and mean_s (HSV), while color variation statistics 

(std_r, std_g, std_s, std_v, std_h, std_b) contribute at an intermediate level. The mean values of hue (mean_h) and 

value (mean_v) appear at the lower end of the top 20 features. 

These findings indicate that egg geometry captured by Hu moments (rotation- and scale-invariant descriptors) and 

shape-related metrics such as eccentricity, elongation, and diagonal length is the primary determinant of weight 

estimation in this dataset. Color cues provide complementary information, likely helping to account for shell 

pigmentation differences (e.g., between chicken and duck eggs), thereby enhancing predictive performance even 

though they are less dominant than shape-related features. 

5. Conclusion 

This study developed an image-based egg weight estimation pipeline combining segmentation, classification, and 

regression. The Mask R-CNN segmented eggs to extract morphological, shape, and color features. The RF classifier 

was used for the classification of egg type and achieved perfect accuracy. The XGBoost regressor for generating the 

egg weight estimator model. Based on experimental results, the best model on training achieves the MAE = 1.07 g, R² 

= 0.68, and on validation achieves the MAE = 0.23 g, R² = 0.80. Bland-Altman plots showed validation predictions 

were more stable and less dispersed, due to the GroupKFold split and dataset structure. The feature importance 

highlighted shape descriptors, especially Hu moments, eccentricity, elongation, and diagonal length as most influential, 

with color statistics as complementary. A Support Vector Regressor baseline performed well on training but failed to 

generalize (R² < 0), confirming XGBoost’s better balance of accuracy and generalization. 

Further research needs to conduct robustness or ablation tests and t-tests or Wilcoxon Rank-Sum Test. Robustness or 

ablation tests are used to evaluate data sensitivity to segmentation errors, color shifts, or occlusions, or to measure 

performance changes when certain feature changes (e.g., Hu moments, color features, or morphological descriptors) 

are removed in grouped cross-validation. t-tests or Wilcoxon tests are used to confirm the significant effect of model 

performance improvements when feature changes occur. 
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